Experimental Verification of Three-Dimensional Plasmonic Cloaking in Free-Space

We report the experimental verification of metamaterial cloaking for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite-length dielectric cylinder. We verify that scattering suppression is obtained all around the object in the near- and far-field and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our near- field and far-field measurements confirm that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects with moderate transverse cross-section at microwave frequencies.

[1]  S. Tretyakov,et al.  Electromagnetic cloaking with metamaterials , 2009 .

[2]  G. Barbastathis,et al.  Macroscopic invisibility cloak for visible light. , 2010, Physical review letters.

[3]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[4]  Jack Ng,et al.  Illusion optics: the optical transformation of an object into another object. , 2009, Physical review letters.

[5]  Viktor A. Podolskiy,et al.  A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance , 2005, Proceedings of the Royal Society A.

[6]  A. Alú,et al.  Mantle cloaking using thin patterned metasurfaces , 2011 .

[7]  W. Rotman Plasma simulation by artificial dielectrics and parallel-plate media , 1962 .

[8]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[9]  S. Tretyakov,et al.  Strong spatial dispersion in wire media in the very large wavelength limit , 2002, cond-mat/0211204.

[10]  N. Engheta,et al.  Parallel-plate metamaterials for cloaking structures. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Huanyang Chen,et al.  Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. , 2008, Physical review letters.

[12]  U. Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[13]  Ulf Leonhardt,et al.  Geometry and light: The science of invisibility , 2010, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[14]  N. Engheta,et al.  Cloaking a sensor. , 2009, Physical review letters.

[15]  S. G. Zybtsev,et al.  High-frequency, 'quantum' and electromechanical effects in quasi-one-dimensional charge density wave conductors , 2013 .

[16]  Yu Luo,et al.  Macroscopic invisibility cloaking of visible light , 2010, Nature communications.

[17]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[18]  H. A. Yousif,et al.  Light scattering at oblique incidence on two coaxial cylinders. , 1994, Applied optics.

[19]  Bae-Ian Wu,et al.  Cylindrical cloaking at oblique incidence with optimized finite multilayer parameters. , 2010, Optics letters.

[20]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[21]  Martin W. McCall,et al.  A spacetime cloak, or a history editor , 2011 .

[22]  A. Alú,et al.  Mantle cloak: Invisibility induced by a surface , 2009 .

[23]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[24]  N. Engheta,et al.  Effects of size and frequency dispersion in plasmonic cloaking. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  G. D’Aguanno,et al.  Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings. , 2011 .

[26]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[27]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[28]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[29]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[31]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[32]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[33]  N. Engheta,et al.  Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. , 2009, Physical review letters.

[34]  D. Rainwater,et al.  Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling , 2010, 1005.2637.

[35]  Wenshan Cai,et al.  Designs for optical cloaking with high-order transformations. , 2008, Optics express.

[36]  M. Kerker,et al.  Abnormally low electromagnetic scattering cross sections , 1976 .

[37]  S. Cummer,et al.  Experimental acoustic ground cloak in air. , 2011, Physical review letters.

[38]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.