Superionic Lithium Intercalation through 2 × 2 nm2 Columns in the Crystallographic Shear Phase Nb18W8O69

<p>Nb<sub>18</sub>W<sub>8</sub>O<sub>69</sub> (9Nb<sub>2</sub>O<sub>5</sub>×8WO<sub>3</sub>) is the tungsten-rich end-member of the Wadsley–Roth crystallographic shear (<i>cs</i>) structures within the Nb<sub>2</sub>O<sub>5</sub>–WO<sub>3</sub> series. It has the largest block size of any known, stable Wadsley–Roth phase, comprising 5 x 5 units of corner-shared MO<sub>6</sub> octahedra between the shear planes, giving rise to 2 nm x 2 nm blocks. Rapid lithium intercalation is observed in this new candidate battery material and <sup>7</sup>Li pulsed field gradient nuclear magnetic resonance spectroscopy – measured in a battery electrode for the first time at room temperature – reveals superionic lithium conductivity with Li diffusivities at 298 K predominantly between 10<sup>–10</sup> and 10<sup>–12</sup> m<sup>2</sup>·s<sup>–1</sup>. In addition to its promising rate capability, Nb<sub>18</sub>W<sub>8</sub>O<sub>69</sub> adds a piece to the larger picture of our understanding of high-performance Wadsley–Roth complex metal oxides.</p>

[1]  A. J. Morris,et al.  Lithium Diffusion in Niobium Tungsten Oxide Shear Structures , 2020, Chemistry of materials : a publication of the American Chemical Society.

[2]  A. J. Morris,et al.  Ionic and Electronic Conduction in TiNb2O7 , 2019, Journal of the American Chemical Society.

[3]  A. J. Morris,et al.  Cation Disorder and Lithium Insertion Mechanism of Wadsley-Roth Crystallographic Shear Phases from First Principles. , 2019, Journal of the American Chemical Society.

[4]  A. J. Morris,et al.  First-principles study of localized and delocalized electronic states in crystallographic shear phases of niobium oxide , 2018, Physical Review B.

[5]  G. Hautier,et al.  Superionic Diffusion through Frustrated Energy Landscape , 2017, Chem.

[6]  Zaiping Guo,et al.  W3Nb14O44 nanowires: Ultrastable lithium storage anode materials for advanced rechargeable batteries , 2019, Energy Storage Materials.

[7]  Haiquan Xie,et al.  Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries , 2018, Electrochimica Acta.

[8]  Giannantonio Cibin,et al.  Niobium tungsten oxides for high-rate lithium-ion energy storage , 2018, Nature.

[9]  T. Norby,et al.  Is ReO3 a mixed ionic-electronic conductor? A DFT study of defect formation and migration in a BVIO3 perovskite-type oxide. , 2018, Physical chemistry chemical physics : PCCP.

[10]  M. Shui,et al.  Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism , 2017 .

[11]  Kent J. Griffith,et al.  Structural Stability from Crystallographic Shear in TiO2-Nb2O5 Phases: Cation Ordering and Lithiation Behavior of TiNb24O62. , 2017, Inorganic chemistry.

[12]  Shiwei Lin,et al.  Porous TiNb24O62 microspheres as high-performance anode materials for lithium-ion batteries of electric vehicles. , 2016, Nanoscale.

[13]  J. GriffithKent,et al.  High-RateIntercalation without Nanostructuring inMetastable Nb 2 O 5 Bronze Phases , 2016 .

[14]  Alexander C. Forse,et al.  High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases. , 2016, Journal of the American Chemical Society.

[15]  X. Bai,et al.  Real-time Observation of Deep Lithiation of Tungsten Oxide Nanowires by In Situ Electron Microscopy. , 2015, Angewandte Chemie.

[16]  M. Tribus,et al.  Nanoindentation, High‐Temperature Behavior, and Crystallographic/Spectroscopic Characterization of the High‐Refractive‐Index Materials TiTa2O7 and TiNb2O7. , 2015 .

[17]  K. Knight,et al.  Lithium insertion properties of Li{sub x}TiNb{sub 2}O{sub 7} investigated by neutron diffraction and first-principles modelling , 2015 .

[18]  M. Tribus,et al.  Nanoindentation, High-Temperature Behavior, and Crystallographic/Spectroscopic Characterization of the High-Refractive-Index Materials TiTa2O7 and TiNb2O7. , 2015, Inorganic chemistry.

[19]  Yitai Qian,et al.  Bulk Ti2Nb10O29 as long-life and high-power Li-ion battery anodes , 2014 .

[20]  Alexander Kuhn,et al.  A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[21]  Alexander Kuhn,et al.  Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes , 2013 .

[22]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[23]  Yong‐Sheng Hu,et al.  Investigation on Ti2Nb10O29 anode material for lithium-ion batteries , 2012 .

[24]  Matthew Sale,et al.  3DBVSMAPPER: a program for automatically generating bond‐valence sum landscapes , 2012 .

[25]  M. Deschamps,et al.  Lithium diffusion in lithium nitride by pulsed-field gradient NMR. , 2012, Physical chemistry chemical physics : PCCP.

[26]  K. Hayamizu Temperature Dependence of Self-Diffusion Coefficients of Ions and Solvents in Ethylene Carbonate, Propylene Carbonate, and Diethyl Carbonate Single Solutions and Ethylene Carbonate + Diethyl Carbonate Binary Solutions of LiPF6 Studied by NMR , 2012 .

[27]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[28]  Yong‐Sheng Hu,et al.  Atomic-scale investigation on lithium storage mechanism in TiNb2O7, , 2011 .

[29]  Yunhui Huang,et al.  New Anode Framework for Rechargeable Lithium Batteries , 2011 .

[30]  U. V. Varadaraju,et al.  Electrochemical Li insertion studies on WNb12O33—A shear ReO3 type structure , 2010 .

[31]  M. Dollé,et al.  A Reversible Lithium Intercalation Process in an ReO3 ­ Type Structure PNb9 O 25 , 2002 .

[32]  Y. Koishikawa,et al.  Thermodynamics and Kinetics of Lithium Intercalation into Nb2 O 5 Electrodes for a 2 V Rechargeable Lithium Battery , 1999 .

[33]  A. F. Fuentes Lithium and sodium insertion in W3Nb14O44, a block structure type phase , 1997 .

[34]  L. Torres-Martínez,et al.  A study of lithium insertion in W4Nb26O77: Synthesis and characterization of new phases , 1996 .

[35]  L. Torres-Martínez,et al.  A Comparative Study of Lithium and Sodium Insertion in Two Block Structure Type Phases, W 3 Nb 14 O 44 and W 4 Nb 26 O 77 , 1996 .

[36]  H. Looser,et al.  Ag diffusion constant in RbAg4I5 and KAg4I5 determined by pulsed magnetic gradient NMR , 1983 .

[37]  Robert Joseph Cava,et al.  Lithium Insertion in Wadsley‐Roth Phases Based on Niobium Oxide , 1983 .

[38]  D. Murphy,et al.  The structures of the lithium inserted metal oxides Li0.2ReO3 and Li0.36WO3 , 1983 .

[39]  A. Cheetham,et al.  Cation distribution in the complex oxide, W3Nb14O44; a time-of-flight neutron diffraction study , 1983 .

[40]  D. Murphy,et al.  The structures of lithium-inserted metal oxides: LiReO3 and Li2ReO3 , 1982 .

[41]  D. Murphy,et al.  Structural aspects of lithium insertion in oxides: LixReO3 and Li2FeV3O8 , 1981 .

[42]  A. Cheetham,et al.  The structures of some titanium-niobium oxides by powder neutron diffraction , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[43]  A. Cheetham,et al.  Cation Distributions in Niobium Oxide Block Structures , 1973 .

[44]  B. Hyde,et al.  Relations between the DO9(ReO3) structure type and some `bronze' and `tunnel' structures , 1973 .

[45]  S. Svensson,et al.  The Crystal Structure of Nb2WO8. , 1972 .

[46]  R. Roth,et al.  The effect of annealing on the concentration of Wadsley defects in the Nb2O5WO3 system , 1971 .

[47]  R. S. Roth,et al.  Phase Equilibria as Related to Crystal Structure in the System Niobium Pentoxide-Tungsten Trioxide. , 1966, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[48]  R. S. Roth,et al.  Multiple phase formation in the binary system Nb2O5–WO3. III. The structures of the tetragonal phases W3Nb14O44 and W8Nb18O69 , 1965 .

[49]  A. D. Wadsley Mixed oxides of titanium and niobium. I. , 1961 .

[50]  M. Inghram,et al.  Polymeric Gaseous Species in the Sublimation of Tungsten Trioxide , 1957 .