Facile Synthesis of Calcium Borate Nanoparticles and the Annealing Effect on Their Structure and Size

Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4) nanoparticles and tetraborate (CaB4O7) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.

[1]  M. Zahedifar,et al.  Synthesis and thermoluminescence characteristics of Mn doped CaF2 nanoparticles , 2012 .

[2]  B. Nagabhushana,et al.  Thermoluminescence of combustion synthesized yttrium oxide , 2012 .

[3]  D. P. Bisen,et al.  Mechanoluminescence and thermoluminescence of Mn doped ZnS nanocrystals , 2011 .

[4]  S. Lochab,et al.  Synthesis and characterization of thermoluminescent Li2B4O7 nanophosphor , 2011 .

[5]  Z. Khan,et al.  Nanoparticles of Al2O3:Cr as a sensitive thermoluminescent material for high exposures of gamma rays irradiations , 2011 .

[6]  A. Yılmaz,et al.  The effect of synthesis and doping procedures on thermoluminescent response of lithium tetraborate , 2011 .

[7]  N. Salah Nanocrystalline materials for the dosimetry of heavy charged particles: A review , 2011 .

[8]  P. Townsend,et al.  Thermoluminescence studies of thermally treated CaB4O7:Dy , 2010 .

[9]  T. Depci,et al.  Comparison of Different Synthesis Methods to Produce Lithium Triborate and Their Effects on Its Thermoluminescent Property , 2010 .

[10]  V. Kortov Nanophosphors and outlooks for their use in ionizing radiation detection , 2010 .

[11]  N. B. Ingale,et al.  Synthesis and luminescence properties of nanocrystalline LiF:Mg,Cu,P phosphor , 2010 .

[12]  H. A. Ahangar,et al.  Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method , 2010 .

[13]  Z. Khan,et al.  Nanoparticles of BaSO4:Eu for heavy-dose measurements , 2009 .

[14]  D. Mendoza-Anaya,et al.  Ag nanoparticle effects on the thermoluminescent properties of monoclinic ZrO2 exposed to ultraviolet and gamma radiation , 2007, Nanotechnology.

[15]  A. Pandey,et al.  Nanocrystalline MgB4O7:Dy for high dose measurement of gamma radiation , 2007 .

[16]  A. Yılmaz,et al.  Investigation of thermoluminescence properties of metal oxide doped lithium triborate , 2007 .

[17]  P. D. Sahare,et al.  Thermoluminescence of nanocrystalline LiF:Mg, Cu, P , 2007 .

[18]  P. D. Sahare,et al.  K3Na(SO4)2 : Eu nanoparticles for high dose of ionizing radiation , 2007 .

[19]  R. A. Rodríguez,et al.  Thermoluminescence properties of undoped and Tb3+ and Ce3+ doped YAG nanophosphor under UV-, X- and β-ray irradiation , 2007 .

[20]  A. Hernandes,et al.  Undoped and calcium doped borate glass system for thermoluminescent dosimeter , 2006 .

[21]  A. Murugan,et al.  A coprecipitation technique to prepare Sro.5Bao.5Nb206 , 2006 .

[22]  A. Murugan,et al.  Chemical methods to synthesize FeTiO3 powders , 2006 .

[23]  V. V. Ulyanov,et al.  High resolution backscattering studies of nanostructured magnetic and semiconducting materials , 2005 .

[24]  V. Ravi A coprecipitation technique to prepare SrNb2O6 , 2005 .

[25]  Yuzuru Takamura,et al.  Escherichia coli single-strand binding protein–DNA interactions on carbon nanotube-modified electrodes from a label-free electrochemical hybridization sensor , 2005, Analytical and bioanalytical chemistry.

[26]  S. Sharma,et al.  Evaluation of trapping parameters of thermally stimulated luminescence glow curves in Cu-doped Li2B4O7 phosphor , 2005 .

[27]  H. S. Potdar,et al.  Co-Precipitation Method for the Preparation of Nanocrystalline Ferroelectric SrBi2Nb2O9 Ceramics , 2005 .

[28]  H. S. Potdar,et al.  Co-precipitation method for the preparation of fine ferroelectric BaBi2Nb2O9 , 2005 .

[29]  H. S. Potdar,et al.  Co-Precipitation Method for the Preparation of Nanocrystalline Ferroelectric SrBi 2 Nb , 2005 .

[30]  J. Manam Thermally stimulated luminescence studies of undoped and doped CaB4O7 compounds , 2003 .

[31]  S. B. Deshpande,et al.  Co-precipitation technique for the preparation of nanocrystalline ferroelectric SrBi2Ta2O9 , 2003 .

[32]  王洪升,et al.  Method for producing calcium formate , 2003 .

[33]  M. Silvab,et al.  A double-coated magnetite-based magnetic fluid evaluation by cytometry and genetic tests , 2002 .

[34]  Jun‐Jie Zhu,et al.  Preparation of CdS and ZnS nanoparticles using microwave irradiation , 2001 .

[35]  G. Blasse,et al.  Luminescence of Pb2+ in several calcium borates , 1995 .

[36]  Y. Fukuda,et al.  Thermoluminescence in Sintered CaB4O7:Dy and CaB4O7:Eu , 1986 .