New Algorithms for Evaluating the Log-Likelihood Function Derivatives in the AI-REML Method
暂无分享,去创建一个
[1] I. Misztal,et al. Property of Trace in Restricted Maximum Likelihood Estimation of Variance Components , 1990 .
[2] D. Harville,et al. Some new algorithms for computing restricted maximum likelihood estimates of variance components , 1991 .
[3] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[4] Robin Thompson,et al. Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models , 1995 .
[5] W. Ewens. Genetics and analysis of quantitative traits , 1999 .
[6] Robin Thompson,et al. Restricted Maximum Likelihood Estimation of Variance Components for Univariate Animal Models Using Sparse Matrix Techniques and Average Information , 1995 .
[7] Sverker Holmgren,et al. Newton-type methods for REML estimation in genetic analysis of quantitative traits , 2007, J. Comput. Methods Sci. Eng..
[8] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[9] SP Smith,et al. Restricted maximum likelihood estimation for animal models using derivatives of the likelihood , 1996, Genetics Selection Evolution.
[10] Douglas Bates. Sparse Matrix Representations of Linear Mixed Models , 2004 .
[11] S. Holmgren,et al. Efficient Implementation of the AI-REML Iteration for Variance Component QTL Analysis , 2007, 0709.0625.