New Algorithms for Evaluating the Log-Likelihood Function Derivatives in the AI-REML Method

In this study, we propose several improvements of the Average Information Restricted Maximum Likelihood algorithms for estimating the variance components for genetic mapping of quantitative traits. The improved methods are applicable when two variance components are to be estimated. The improvements are related to the algebraic part of the methods and utilize the properties of the underlying matrix structures. In contrast to previously developed algorithms, the explicit computation of a matrix inverse is replaced by the solution of a linear system of equations with multiple right-hand sides, based on a particular matrix decomposition. The computational costs of the proposed algorithms are analyzed and compared.