An Evaluation of Satellite Remote Sensing Data Products for Land Surface Hydrology: Atmospheric Infrared Sounder*

Abstract The skill of instantaneous Atmospheric Infrared Sounder (AIRS) retrieved near-surface meteorology, including surface skin temperature (Ts), air temperature (Ta), specific humidity (q), and relative humidity (RH), as well as model-derived surface pressure (Psurf) and 10-m wind speed (w), is evaluated using collocated National Climatic Data Center (NCDC) in situ observations, offline data from the North American Land Data Assimilation System (NLDAS), and geostationary remote sensing (RS) data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Such data are needed for RS-based water cycle monitoring in areas without readily available in situ data. The study is conducted over the continental United States and Africa for a period of more than 6 years (2002–08). For both regions, it provides for the first time the geographic distribution of AIRS retrieval performance. Through conditional sampling, attribution of retrieval errors to scene atmospheric and surface conditions is performed. Th...

[1]  Isabel F. Trigo,et al.  An assessment of remotely sensed land surface temperature , 2008 .

[2]  R. Koster,et al.  Observational evidence that soil moisture variations affect precipitation , 2003 .

[3]  T. Jackson,et al.  Using TRMM/TMI to Retrieve Surface Soil Moisture over the Southern United States from 1998 to 2002 , 2006 .

[4]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[5]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[6]  Steven A. Margulis,et al.  Variational Assimilation of Radiometric Surface Temperature and Reference-Level Micrometeorology into a Model of the Atmospheric Boundary Layer and Land Surface , 2003 .

[7]  W. Cohen,et al.  Evaluation of MODIS NPP and GPP products across multiple biomes. , 2006 .

[8]  Shashi,et al.  The Langley Parameterized Shortwave Algorithm ( LPSA ) for Surface Radiation Budget Studies Version 1 . 0 , 2022 .

[9]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[11]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[12]  C. Birkett,et al.  Contribution of the TOPEX NASA Radar Altimeter to the global monitoring of large rivers and wetlands , 1998 .

[13]  Venkat Lakshmi,et al.  Land surface air temperature mapping using TOVS and AVHRR , 2001 .

[14]  J. D. Tarpley,et al.  Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains : GEWEX Continental-Scale International Project, Part 3 (GCIP3) , 2003 .

[15]  A. Holtslag,et al.  Influence of Soil Moisture on Boundary Layer Cloud Development , 2004 .

[16]  Joel Susskind,et al.  Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[17]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[18]  Christopher D. Barnet,et al.  Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts , 2006 .

[19]  James G. Yoe,et al.  The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States , 2008 .

[20]  D. Lawrence,et al.  GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview , 2006 .

[21]  T. Kemper,et al.  A new tool for variable multiple endmember spectral mixture analysis (VMESMA) , 2005 .

[22]  D. Mocko,et al.  Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS phase 2(e) - 1: Experiment description and summary intercomparisons , 2003 .

[23]  J. Schmetz,et al.  AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .

[24]  J. N. Lott THE QUALITY CONTROL OF THE INTEGRATED SURFACE HOURLY DATABASE , 2022 .

[25]  Eric F. Wood,et al.  Satellite Microwave Remote Sensing of Daily Land Surface Air Temperature Minima and Maxima From AMSR-E , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[26]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[27]  Toshio Koike,et al.  Development of a physically-based soil moisture retrieval algorithm for spaceborne passive microwave radiometers and its application to AMSR-E , 2009 .

[28]  Paul A. Dirmeyer,et al.  The Hydrologic Feedback Pathway for Land–Climate Coupling , 2006 .

[29]  J. D. Tarpley,et al.  Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project , 2003 .

[30]  Kuolin Hsu,et al.  Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation , 1999 .

[31]  T. Huntington Evidence for intensification of the global water cycle: Review and synthesis , 2006 .

[32]  Maria Stella Chiacchio,et al.  The WCRP/GEWEX Surface Radiation Budget Project Release 2: An Assessment of Surface Fluxes at 1 Degree Resolution , 2000 .

[33]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme , 1983 .

[34]  F. S. Olesen,et al.  Initial results of the land surface temperature (LST) validation with the Evora, Portugal ground‐truth station measurements , 2008 .

[35]  Eric F. Wood,et al.  Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA , 2010 .

[36]  Pedro Viterbo,et al.  The land surface‐atmosphere interaction: A review based on observational and global modeling perspectives , 1996 .

[37]  J. Bolten,et al.  Estimating precipitation errors using spaceborne surface soil moisture retrievals , 2007 .

[38]  Paul W. Stackhouse,et al.  The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0 , 2001 .

[39]  L. Larrabee Strow,et al.  Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation , 2006 .

[40]  Lena Iredell,et al.  Characteristics of the TOVS Pathfinder Path A Dataset , 1997 .

[41]  D. Hall,et al.  Accuracy assessment of the MODIS snow products , 2007 .

[42]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .

[43]  Leung Tsang,et al.  A prototype AMSR-E global snow area and snow depth algorithm , 2003, IEEE Trans. Geosci. Remote. Sens..

[44]  Hannes Isaak Reuter,et al.  An evaluation of void‐filling interpolation methods for SRTM data , 2007, Int. J. Geogr. Inf. Sci..

[45]  Jean-Noël Thépaut,et al.  Analysis and forecast impact of the main humidity observing systems , 2007 .

[46]  Isabel F. Trigo,et al.  Thermal Land Surface Emissivity Retrieved From SEVIRI/Meteosat , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[47]  D. Lettenmaier,et al.  Assimilating remotely sensed snow observations into a macroscale hydrology model , 2006 .

[48]  Eric F. Wood,et al.  An efficient calibration method for continental‐scale land surface modeling , 2008 .

[49]  Wade T. Crow,et al.  Role of Passive Microwave Remote Sensing in Improving Flood Forecasts , 2009, IEEE Geoscience and Remote Sensing Letters.

[50]  N. Lott,et al.  The FCC integrated surface hourly database : a new resource of global climate data , 2001 .

[51]  Christopher D. Barnet,et al.  Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover , 2006 .

[52]  S. Ganguly,et al.  Author ' s personal copy Generating vegetation leaf area index Earth system data record from multiple sensors . Part 2 : Implementation , analysis and validation , 2008 .

[53]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[54]  Roger A. Pielke,et al.  Microclimate Exposures of Surface-Based Weather Stations: Implications For The Assessment of Long-Term Temperature Trends. , 2005 .

[55]  M. Chahine,et al.  Remote sounding of cloudy atmospheres. II - Multiple cloud formations , 1977 .

[56]  Xuan Feng,et al.  Validation of the Surface Air Temperature Products Retrieved From the Atmospheric Infrared Sounder Over China , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[57]  José M. Bioucas-Dias,et al.  Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI/Meteosat , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Leonardo F. Peres,et al.  Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[59]  T. Jackson,et al.  Improving Satellite-Based Rainfall Accumulation Estimates Using Spaceborne Surface Soil Moisture Retrievals , 2009 .

[60]  Christopher D. Barnet,et al.  Determination of atmospheric and surface parameters from simulated AIRS/AMSU/HSB sounding data: Retrieval and cloud clearing methodology , 1998 .

[61]  Matthew F. McCabe,et al.  Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies , 2008 .

[62]  Lifeng Luo,et al.  Monitoring and predicting the 2007 U.S. drought , 2007 .

[63]  Robert E. Wolfe,et al.  An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series , 2008, IEEE Geoscience and Remote Sensing Letters.

[64]  Wade T. Crow,et al.  A land surface data assimilation framework using the land information system : Description and applications , 2008 .

[65]  A. Lacis,et al.  Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data , 2004 .

[66]  Moustafa T. Chahine,et al.  Remote Sounding of Cloudy Atmospheres. I. The Single Cloud Layer , 1974 .

[67]  A. Cazenave,et al.  Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin , 2006 .

[68]  Wade T. Crow,et al.  The added value of spaceborne passive microwave soil moisture retrievals for forecasting rainfall‐runoff partitioning , 2005 .

[69]  Per Jönsson,et al.  TIMESAT - a program for analyzing time-series of satellite sensor data , 2004, Comput. Geosci..

[70]  Eric J. Fetzer,et al.  Preface to special section: Validation of Atmospheric Infrared Sounder Observations , 2006 .

[71]  W. Shuttleworth,et al.  Macrohydrology ― the new challenge for process hydrology , 1988 .

[72]  Dirk Pflugmacher,et al.  Numerical Terradynamic Simulation Group 7-2006 MODIS land cover and LAI Collection 4 product quality across nine sites in the western hemisphere , 2018 .

[73]  Yang Hong,et al.  Flood and landslide applications of near real-time satellite rainfall products , 2007 .

[74]  N. DiGirolamo,et al.  MODIS snow-cover products , 2002 .

[75]  Nancy A. Ritchey,et al.  Seasonal variation of surface radiation budget derived from International Satellite Cloud Climatology Project C1 data , 1992 .

[76]  Erich Franz Stocker,et al.  Analysis of TRMM 3-Hourly Multi-Satellite Precipitation Estimates Computed in Both Real and Post-Real Time , 2002 .

[77]  Wade T. Crow,et al.  An adaptive ensemble Kalman filter for soil moisture data assimilation , 2007 .

[78]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[79]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[80]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[81]  Eric F. Wood,et al.  A Multiscale Ensemble Filtering System for Hydrologic Data Assimilation. Part II: Application to Land Surface Modeling with Satellite Rainfall Forcing , 2009 .

[82]  Hartmut H. Aumann,et al.  AIRS-Team Retrieval For Core Products and Geophysical Parameters-Level 2 , 2000 .

[83]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[84]  Paul R. Houser,et al.  A methodology for initializing soil moisture in a global climate model: Assimilation of near‐surface soil moisture observations , 2001 .

[85]  R. Jeu,et al.  Land surface temperature from Ka band (37 GHz) passive microwave observations , 2009 .

[86]  R. Simpson On The Computation of Equivalent Potential Temperature , 1978 .

[87]  M. Mccabe,et al.  Closing the terrestrial water budget from satellite remote sensing , 2009 .

[88]  W. Crow,et al.  The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97 , 2003 .

[89]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .

[90]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[91]  Mark A. Friedl,et al.  Relationships among Remotely Sensed Data, Surface Energy Balance, and Area-Averaged Fluxes over Partially Vegetated Land Surfaces , 1996 .