Unravelling mechanisms of p53-mediated tumour suppression

[1]  Kyung-Ja Cho,et al.  Epithelial-Mesenchymal Transition , 2014, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[2]  K. Vousden,et al.  Metabolic Regulation by p53 Family Members , 2013, Cell metabolism.

[3]  A. Strasser,et al.  p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. , 2013, Cell reports.

[4]  A. Rosenwald,et al.  p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. , 2013, Cell reports.

[5]  T. Palmer,et al.  Extracellular adenosine sensing-a metabolic cell death priming mechanism downstream of p53. , 2013, Molecular cell.

[6]  A. Sidow,et al.  Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. , 2013, Genes & development.

[7]  Darjus F. Tschaharganeh,et al.  Non-Cell-Autonomous Tumor Suppression by p53 , 2013, Cell.

[8]  U. Moll,et al.  Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis , 2013, Cell Death and Differentiation.

[9]  R. Langer,et al.  Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. , 2013, Cancer cell.

[10]  D. Menendez,et al.  Interactions between the tumor suppressor p53 and immune responses , 2013, Current opinion in oncology.

[11]  K. Vousden,et al.  p53 mutations in cancer , 2013, Nature Cell Biology.

[12]  Juan Liu,et al.  The regulation of cellular metabolism by tumor suppressor p53 , 2013, Cell & Bioscience.

[13]  V. Pant,et al.  The p53 pathway in hematopoiesis: lessons from mouse models, implications for humans. , 2012, Blood.

[14]  G. Melino,et al.  Identification of NCF2/p67phox as a novel p53 target gene , 2012, Cell cycle.

[15]  A. Levine,et al.  Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. , 2012, Cancer research.

[16]  Ettore Appella,et al.  p53 N-terminal phosphorylation: a defining layer of complex regulation. , 2012, Carcinogenesis.

[17]  T Kivioja,et al.  Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis , 2012, Cell Death and Differentiation.

[18]  Wei Gu,et al.  Tumor Suppression in the Absence of p53-Mediated Cell-Cycle Arrest, Apoptosis, and Senescence , 2012, Cell.

[19]  Lin He,et al.  The emerging functions of the p53-miRNA network in stem cell biology , 2012, Cell cycle.

[20]  Manuel Serrano,et al.  EMT and induction of miR-21 mediate metastasis development in Trp53-deficient tumours , 2012, Scientific Reports.

[21]  P. Ward,et al.  Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. , 2012, Cancer cell.

[22]  Douglas Hanahan,et al.  Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment Prospects and Obstacles for Therapeutic Targeting of Function-enabling Stromal Cell Types , 2022 .

[23]  A. Levine,et al.  The Regulation of Multiple p53 Stress Responses is Mediated through MDM2. , 2012, Genes & cancer.

[24]  L. Attardi,et al.  Deconstructing p53 transcriptional networks in tumor suppression. , 2012, Trends in cell biology.

[25]  G. Pavesi,et al.  Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63 , 2012, Oncotarget.

[26]  Christopher A. Maher,et al.  A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition , 2011, The Journal of cell biology.

[27]  Yong Jin Choi,et al.  miR-34 miRNAs provide a barrier for somatic cell reprogramming , 2011, Nature Cell Biology.

[28]  M. Scott,et al.  Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages , 2011, Proceedings of the National Academy of Sciences.

[29]  Shiyun Ling,et al.  TopBP1 Mediates Mutant p53 Gain of Function through NF-Y and p63/p73 , 2011, Molecular and Cellular Biology.

[30]  A. Budanov Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. , 2011, Antioxidants & redox signaling.

[31]  M. Mclaughlin,et al.  Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression , 2011, Cell.

[32]  Tae Jin Lee,et al.  p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2 , 2011, The Journal of experimental medicine.

[33]  X. Wang,et al.  Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death , 2011, Cell Death and Differentiation.

[34]  Varda Rotter,et al.  Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. , 2011, Genes & cancer.

[35]  J. Thiery,et al.  SnapShot: The Epithelial-Mesenchymal Transition , 2011, Cell.

[36]  Hendrik G. Stunnenberg,et al.  Role of p53 Serine 46 in p53 Target Gene Regulation , 2011, PloS one.

[37]  Karen H. Vousden,et al.  Metabolic regulation by p53 , 2011, Journal of Molecular Medicine.

[38]  Steffen Jung,et al.  CKIα ablation highlights a critical role for p53 in invasiveness control , 2011, Nature.

[39]  Magali Olivier,et al.  Somatic mutations in cancer prognosis and prediction: lessons from TP53 and EGFR genes , 2011, Current opinion in oncology.

[40]  M. Hung,et al.  p53 regulates epithelial-mesenchymal transition (EMT) and stem cell properties through modulating miRNAs , 2010, Nature Cell Biology.

[41]  E. White,et al.  Autophagy, stress, and cancer metabolism: what doesn't kill you makes you stronger. , 2011, Cold Spring Harbor symposia on quantitative biology.

[42]  S. Lowe,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2011, Nature.

[43]  M. Hung,et al.  p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs , 2011, Nature Cell Biology.

[44]  G. Wahl,et al.  Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures , 2010, Proceedings of the National Academy of Sciences.

[45]  A. Fornace,et al.  Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. , 2010, Cancer research.

[46]  Youngho Seo,et al.  Selective activation of p53-mediated tumour suppression in high-grade tumours , 2010, Nature.

[47]  Francisco J. Sánchez-Rivera,et al.  Stage-specific sensitivity to p53 restoration during lung cancer progression , 2010, Nature.

[48]  H. Vogel,et al.  Loss of the p53/p63 Regulated Desmosomal Protein Perp Promotes Tumorigenesis , 2010, PLoS genetics.

[49]  Jason I. Herschkowitz,et al.  Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. , 2010, The Journal of clinical investigation.

[50]  V. Rotter,et al.  Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells , 2010, The Journal of experimental medicine.

[51]  C. Prives,et al.  Transcriptional regulation by p53. , 2010, Cold Spring Harbor perspectives in biology.

[52]  L. Attardi,et al.  p53 at a glance , 2010, Journal of Cell Science.

[53]  S. Lowe,et al.  p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. , 2010, Genes & development.

[54]  A. Levine,et al.  The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. , 2010, Trends in cell biology.

[55]  A. Rosenwald,et al.  DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. , 2010, Molecular cell.

[56]  G. Wahl,et al.  The p53 orchestra: Mdm2 and Mdmx set the tone. , 2010, Trends in cell biology.

[57]  L. Wiesmüller,et al.  Regulation of MCP-1 chemokine transcription by p53 , 2010, Molecular Cancer.

[58]  A. Levine,et al.  Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function , 2010, Proceedings of the National Academy of Sciences.

[59]  E. Gottlieb,et al.  p53 regulation of metabolic pathways. , 2010, Cold Spring Harbor perspectives in biology.

[60]  I. Simon,et al.  Modulation of the vitamin D3 response by cancer-associated mutant p53. , 2010, Cancer cell.

[61]  A. Quintás-Cardama,et al.  p53-dependent senescence delays Eμ-myc-induced B-cell lymphomagenesis , 2010, Oncogene.

[62]  Y. Xu,et al.  A common gain of function of p53 cancer mutants in inducing genetic instability , 2010, Oncogene.

[63]  Magali Olivier,et al.  TP53 mutations in human cancers: origins, consequences, and clinical use. , 2010, Cold Spring Harbor perspectives in biology.

[64]  Varda Rotter,et al.  Transcriptional control of the proliferation cluster by the tumor suppressor p53. , 2010, Molecular bioSystems.

[65]  C. Anderson,et al.  Posttranslational modification of p53: cooperative integrators of function. , 2009, Cold Spring Harbor perspectives in biology.

[66]  Jeroen S. van Zon,et al.  Direct cell reprogramming is a stochastic process amenable to acceleration , 2009, Nature.

[67]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[68]  Varda Rotter,et al.  When mutants gain new powers: news from the mutant p53 field , 2009, Nature Reviews Cancer.

[69]  Manuel Serrano,et al.  A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity , 2009, Nature.

[70]  M. Blasco,et al.  The Ink4/Arf locus is a barrier for iPS cell reprogramming , 2009, Nature.

[71]  J. Utikal,et al.  Immortalization eliminates a roadblock during cellular reprogramming into iPS cells , 2009, Nature.

[72]  T. Ichisaka,et al.  Suppression of induced pluripotent stem cell generation by the p53–p21 pathway , 2009, Nature.

[73]  L. Donehower,et al.  Timed Somatic Deletion of p53 in Mice Reveals Age-Associated Differences in Tumor Progression , 2009, PloS one.

[74]  G. Wahl,et al.  Linking the p53 tumor suppressor pathway to somatic cell reprogramming , 2009, Nature.

[75]  C. Prives,et al.  Blinded by the Light: The Growing Complexity of p53 , 2009, Cell.

[76]  A. Strasser,et al.  Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis , 2009, Cell Death and Differentiation.

[77]  D. Klionsky,et al.  An overview of the molecular mechanism of autophagy. , 2009, Current topics in microbiology and immunology.

[78]  M. Olivier,et al.  TP 53 Mutations in Human Cancers : Origins , Consequences , and Clinical Use , 2009 .

[79]  Judith Campisi,et al.  Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor , 2008, PLoS biology.

[80]  Gerald C. Chu,et al.  P53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation , 2008, Nature.

[81]  Nobuyuki Tanaka,et al.  p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation , 2008, Nature Cell Biology.

[82]  Eduardo Sontag,et al.  Transcriptional control of human p53-regulated genes , 2008, Nature Reviews Molecular Cell Biology.

[83]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[84]  H. Moon,et al.  Mouse models for xeroderma pigmentosum group A and group C show divergent cancer phenotypes. , 2008, Cancer research.

[85]  W. Deppert,et al.  Mutant p53R270H gain of function phenotype in a mouse model for oncogene‐induced mammary carcinogenesis , 2007, International journal of cancer.

[86]  Pierre Roux,et al.  Loss of p53 promotes RhoA–ROCK-dependent cell migration and invasion in 3D matrices , 2007, The Journal of cell biology.

[87]  A. Multani,et al.  Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53‐dependent cellular senescence , 2007, EMBO reports.

[88]  M. Hollstein,et al.  p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM , 2007, Nature Cell Biology.

[89]  J. Garlick,et al.  Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. , 2007, Genes & development.

[90]  M. Serrano,et al.  A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. , 2007, Genes & development.

[91]  T. Jacks,et al.  Restoration of p53 function leads to tumour regression in vivo , 2007, Nature.

[92]  Z. Ju,et al.  p21 delays tumor onset by preservation of chromosomal stability , 2006, Proceedings of the National Academy of Sciences.

[93]  G. Evan,et al.  The pathological response to DNA damage does not contribute to p53-mediated tumour suppression , 2006, Nature.

[94]  A. Efeyan,et al.  Tumour biology: Policing of oncogene activity by p53 , 2006, Nature.

[95]  Giulia Piaggio,et al.  Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. , 2006, Cancer cell.

[96]  Barbara Hoffman,et al.  Gadd45a suppresses Ras-driven mammary tumorigenesis by activation of c-Jun NH2-terminal kinase and p38 stress signaling resulting in apoptosis and senescence. , 2006, Cancer research.

[97]  Kevin M. Ryan,et al.  DRAM, a p53-Induced Modulator of Autophagy, Is Critical for Apoptosis , 2006, Cell.

[98]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[99]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[100]  A. Giaccia,et al.  Genome-Wide Analysis of p53 under Hypoxic Conditions , 2006, Molecular and Cellular Biology.

[101]  G. Evan,et al.  Specific Requirement for Bax, Not Bak, in Myc-induced Apoptosis and Tumor Suppression in Vivo* , 2006, Journal of Biological Chemistry.

[102]  Rebecca A. Ihrie,et al.  Adult mice lacking the p53/p63 target gene Perp are not predisposed to spontaneous tumorigenesis but display features of ectodermal dysplasia syndromes , 2006, Cell Death and Differentiation.

[103]  Robert D. Cardiff,et al.  Selective Evolution of Stromal Mesenchyme with p53 Loss in Response to Epithelial Tumorigenesis , 2005, Cell.

[104]  P. Chumakov,et al.  The antioxidant function of the p53 tumor suppressor , 2005, Nature Medicine.

[105]  A. Fornace,et al.  Deletion of XPC leads to lung tumors in mice and is associated with early events in human lung carcinogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[106]  P. Pelicci,et al.  G1 checkpoint failure and increased tumor susceptibility in mice lacking the novel p53 target Ptprv , 2005, The EMBO journal.

[107]  P. Hall,et al.  An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[108]  L. Donehower,et al.  Probing p53 biological functions through the use of genetically engineered mouse models. , 2005, Mutation research.

[109]  M. Barbacid,et al.  Tumour biology: Senescence in premalignant tumours , 2005, Nature.

[110]  Jason A. Koutcher,et al.  Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis , 2005, Nature.

[111]  G. Evan,et al.  Temporal dissection of p53 function in vitro and in vivo , 2005, Nature Genetics.

[112]  T. Ørntoft,et al.  DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis , 2005, Nature.

[113]  Dimitris Kletsas,et al.  Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions , 2005, Nature.

[114]  H. Kiaris,et al.  Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. , 2005, Cancer research.

[115]  A. Giaccia,et al.  The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality , 2005, Nature Genetics.

[116]  H. Kiyokawa,et al.  Tumor-prone phenotype of the DDB2-deficient mice , 2005, Oncogene.

[117]  L. Strong,et al.  Gain of Function of a p53 Hot Spot Mutation in a Mouse Model of Li-Fraumeni Syndrome , 2004, Cell.

[118]  T. Jacks,et al.  Mutant p53 Gain of Function in Two Mouse Models of Li-Fraumeni Syndrome , 2004, Cell.

[119]  Jiri Bartek,et al.  Cell-cycle checkpoints and cancer , 2004, Nature.

[120]  Yi Zheng,et al.  Rho family GTPases cooperate with p53 deletion to promote primary mouse embryonic fibroblast cell invasion , 2004, Oncogene.

[121]  Kristian Helin,et al.  Amplification of Mdmx (or Mdm4) Directly Contributes to Tumor Formation by Inhibiting p53 Tumor Suppressor Activity , 2004, Molecular and Cellular Biology.

[122]  S. Lowe,et al.  Suppression of tumorigenesis by the p53 target PUMA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[123]  E. Koonin,et al.  Regeneration of Peroxiredoxins by p53-Regulated Sestrins, Homologs of Bacterial AhpD , 2004, Science.

[124]  M. Armoni,et al.  The Tumor Suppressor p53 Down-Regulates Glucose Transporters GLUT1 and GLUT4 Gene Expression , 2004, Cancer Research.

[125]  A. Mannermaa,et al.  Genetic alterations in the peritumoral stromal cells of malignant and borderline epithelial ovarian tumors as indicated by allelic imbalance on chromosome 3p , 2004, International journal of cancer.

[126]  A. Multani,et al.  Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice , 2004, Nature Genetics.

[127]  Andreas Villunger,et al.  p53- and Drug-Induced Apoptotic Responses Mediated by BH3-Only Proteins Puma and Noxa , 2003, Science.

[128]  R. Paterson,et al.  Molecular genetic alterations in the laser‐capture–microdissected stroma adjacent to bladder carcinoma , 2003, Cancer.

[129]  C. Hadley What doesn't kill you makes you stronger , 2003, EMBO reports.

[130]  J. Cleveland,et al.  Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. , 2003, Cancer cell.

[131]  Tsutomu Yoshida,et al.  Possible alternative carcinogenesis pathway featuring microsatellite instability in colorectal cancer stroma , 2003, British Journal of Cancer.

[132]  Yi Zheng,et al.  p19Arf-p53 Tumor Suppressor Pathway Regulates Cell Motility by Suppression of Phosphoinositide 3-Kinase and Rac1 GTPase Activities* , 2003, The Journal of Biological Chemistry.

[133]  A. Papavassiliou,et al.  p53 activates ICAM‐1 (CD54) expression in an NF‐κB‐independent manner , 2003 .

[134]  S. Lowe,et al.  Tumor suppression by Ink4a-Arf: progress and puzzles. , 2003, Current opinion in genetics & development.

[135]  Albert J Fornace,et al.  Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. , 2002, Cancer research.

[136]  Satoshi Matsumoto,et al.  Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas , 2002, Nature Genetics.

[137]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[138]  M. Oren,et al.  Physical Interaction with Human Tumor-derived p53 Mutants Inhibits p63 Activities* , 2002, The Journal of Biological Chemistry.

[139]  P. Roux,et al.  Regulation of Cdc42‐mediated morphological effects: a novel function for p53 , 2002, The EMBO journal.

[140]  M. Leguia,et al.  Ku86 autoantigen related protein-1 transcription initiates from a CpG island and is induced by p53 through a nearby p53 response element. , 2002, Nucleic acids research.

[141]  S. Lowe,et al.  Dissecting p53 tumor suppressor functions in vivo. , 2002, Cancer cell.

[142]  S. Amundson,et al.  Implication of p53 in base excision DNA repair: in vivo evidence , 2002, Oncogene.

[143]  S. Korsmeyer,et al.  Bax Loss Impairs Myc-Induced Apoptosis and Circumvents the Selection of p53 Mutations during Myc-Mediated Lymphomagenesis , 2001, Molecular and Cellular Biology.

[144]  Valerie Reinke,et al.  Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53 , 2001, Nature Genetics.

[145]  G. Magrane,et al.  Selective Inactivation of p53 Facilitates Mouse Epithelial Tumor Progression without Chromosomal Instability , 2001, Molecular and Cellular Biology.

[146]  M. Serrano,et al.  Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. , 2001, Cancer research.

[147]  Y. Xiong,et al.  Control of p53 ubiquitination and nuclear export by MDM2 and ARF. , 2001, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[148]  C. Prives,et al.  A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain , 2001, Molecular and Cellular Biology.

[149]  P. Pandolfi,et al.  Role of Promyelocytic Leukemia (Pml) Protein in Tumor Suppression , 2001, The Journal of experimental medicine.

[150]  S. Korsmeyer,et al.  Bax accelerates tumorigenesis in p53-deficient mice. , 2001, Cancer research.

[151]  J. Vasiliev,et al.  Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization , 2000, Oncogene.

[152]  C. Tanikawa,et al.  Identification of fractalkine, a CX3C-type chemokine, as a direct target of p53. , 2000, Cancer research.

[153]  D. Cheo,et al.  Defective nucleotide excision repair in xpc mutant mice and its association with cancer predisposition. , 2000, Mutation research.

[154]  E. Stavridi,et al.  Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[155]  S. Lowe,et al.  INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. , 1999, Genes & development.

[156]  M. Roussel,et al.  Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. , 1999, Genes & development.

[157]  William F. Morgan,et al.  Genomic instability in Gadd45a-deficient mice , 1999, Nature Genetics.

[158]  S. Powell,et al.  p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. , 1999, Cancer research.

[159]  Y. Xiong,et al.  Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. , 1999, Molecular cell.

[160]  Charles J. Sherr,et al.  Nucleolar Arf sequesters Mdm2 and activates p53 , 1999, Nature Cell Biology.

[161]  R. Honda,et al.  Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53 , 1999, The EMBO journal.

[162]  A. Giaccia,et al.  The complexity of p53 modulation: emerging patterns from divergent signals. , 1998, Genes & development.

[163]  Karen H. Vousden,et al.  p14ARF links the tumour suppressors RB and p53 , 1998, Nature.

[164]  T. Ishikawa,et al.  p53-Dependent Regulation of Nucleotide Excision Repair in Murine Epidermis in vivo , 1998, Journal of cutaneous medicine and surgery.

[165]  P. Pandolfi,et al.  Role of PML in cell growth and the retinoic acid pathway. , 1998, Science.

[166]  Yoichi Taya,et al.  DNA Damage-Induced Phosphorylation of p53 Alleviates Inhibition by MDM2 , 1997, Cell.

[167]  J. Nevins,et al.  Distinct roles for E2F proteins in cell growth control and apoptosis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[168]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[169]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[170]  S. Korsmeyer,et al.  Bax suppresses tumorigenesis and stimulates apoptosis in vivo , 1997, Nature.

[171]  K. Vousden,et al.  Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function , 1996, Molecular and cellular biology.

[172]  M. Oren,et al.  Specific loss of apoptotic but not cell‐cycle arrest function in a human tumor derived p53 mutant. , 1996, The EMBO journal.

[173]  Guillermina Lozano,et al.  Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53 , 1995, Nature.

[174]  James Brugarolas,et al.  Radiation-induced cell cycle arrest compromised by p21 deficiency , 1995, Nature.

[175]  Stephen J. Elledge,et al.  Mice Lacking p21 CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control , 1995, Cell.

[176]  K. Dameron,et al.  Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. , 1994, Science.

[177]  S. Lowe,et al.  p53-Dependent apoptosis suppresses tumor growth and progression in vivo , 1994, Cell.

[178]  P. Jeffrey,et al.  Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. , 1994, Science.

[179]  C. Purdie,et al.  Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. , 1994, Oncogene.

[180]  R. Weinberg,et al.  Tumor spectrum analysis in p53-mutant mice , 1994, Current Biology.

[181]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[182]  L. Donehower,et al.  Genetic background alters the spectrum of tumors that develop in p53‐deficient mice , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[183]  A. Levine,et al.  Gain of function mutations in p53 , 1993, Nature Genetics.

[184]  Bert Vogelstein,et al.  Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53 , 1993, Nature.

[185]  P. Friedman,et al.  The p53 protein is an unusually shaped tetramer that binds directly to DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[186]  D. Lane,et al.  p53, guardian of the genome , 1992, Nature.

[187]  A. Levine,et al.  The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation , 1992, Cell.

[188]  L. Donehower,et al.  Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours , 1992, Nature.

[189]  D. Lane,et al.  Cancer. p53, guardian of the genome. , 1992, Nature.

[190]  L. Strong,et al.  Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. , 1990, Science.

[191]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[192]  D. Marlowe Progress and Puzzles. , 1967 .