Nucleation of superfluid-light domains

Electromagnetic coupled resonator arrays (CRAs) doped with a quantum two-level system allow for the quantum simulation of a Mott-insulator to superfluid phase transition. We demonstrate that the order of this simulated phase transition depends on the type of dynamics. Thus, a first order like phase transition can be induced by a quench dynamics, while a second order like phase transition is produced by an adiabatic dynamics. In addition, we show that the underlying macroscopic behavior of the phase transition in other many body systems, such as domain nucleation and phase coexistence, can also be observed in CRAs. This universal behavior emerges from the light-matter interaction and the topology of the array. Therefore, the latter can be used to manipulate the photonic transport properties of the simulated super fluid phase.

[1]  J. Vaccaro,et al.  Prospects for photon blockade in four-level systems in the N configuration with more than one atom , 2000, quant-ph/0002091.

[2]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[3]  G. Bianconi,et al.  Phase transition of light on complex quantum networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Martin B Plenio,et al.  Strong photon nonlinearities and photonic mott insulators. , 2007, Physical review letters.

[5]  Changsuk Noh,et al.  Quantum simulations and many-body physics with light , 2016, Reports on progress in physics. Physical Society.

[6]  M.W. Zwierlein,et al.  Observation of bose-einstein condensation of molecules , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[7]  A. Houck,et al.  Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice , 2016, Physical Review X.

[8]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[9]  M. Greiner,et al.  Observation of resonance condensation of fermionic atom pairs. , 2004, Physical review letters.

[10]  Holger Schmidt,et al.  Strongly Interacting Photons in a Nonlinear Cavity , 1997 .

[11]  P. Kapitza,et al.  Viscosity of Liquid Helium below the λ-Point , 1938, Nature.

[12]  Onofrio,et al.  Observation of superfluid flow in a bose-einstein condensed Gas , 2000, Physical review letters.

[13]  Michael J. Hartmann,et al.  Quantum simulation with interacting photons , 2016, 1605.00383.

[14]  A. Houck,et al.  Observation of a Dissipation-Induced Classical to Quantum Transition , 2013, 1312.2963.

[15]  Michael J. Hartmann,et al.  Quantum many‐body phenomena in coupled cavity arrays , 2008, 0808.2557.

[16]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[17]  Immanuel Bloch,et al.  Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .

[18]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[19]  P. Anderson Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems , 2007 .

[20]  G. Blatter,et al.  Strong coupling theory for the Jaynes-Cummings-Hubbard model. , 2009, Physical review letters.

[21]  Isabelle Sagnes,et al.  Spontaneous formation and optical manipulation of extended polariton condensates , 2010, 1004.4084.

[22]  N. Laflorencie,et al.  Detecting quantum critical points using bipartite fluctuations. , 2011, Physical review letters.

[23]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2006, QELS 2006.

[24]  Rosario Fazio,et al.  Mott-insulating and glassy phases of polaritons in 1D arrays of coupled cavities. , 2007, Physical review letters.

[25]  Tim Byrnes,et al.  Exciton–polariton condensates , 2014, Nature Physics.

[26]  S. Maier,et al.  Room-temperature superfluidity in a polariton condensate , 2016, Nature Physics.

[27]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[28]  Andrew D. Greentree,et al.  Quantum phase transitions of light , 2006, cond-mat/0609050.

[29]  P. Littlewood,et al.  Quantum fluctuations, temperature, and detuning effects in solid-light systems. , 2008, Physical review letters.

[30]  S. Bose,et al.  Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays , 2006, quant-ph/0606159.

[31]  H. Evertz,et al.  Excitation spectra of strongly correlated lattice bosons and polaritons , 2009, 0904.1350.

[32]  J. Koch,et al.  Superfluid–Mott-insulator transition of light in the Jaynes-Cummings lattice , 2009, 0905.4005.

[33]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[34]  Yoshihisa Yamamoto,et al.  Strongly correlated polaritons in a two-dimensional array of photonic crystal microcavities , 2007, quant-ph/0703219.