Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems
暂无分享,去创建一个
[1] Michael Ulbrich,et al. Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces , 2011, MOS-SIAM Series on Optimization.
[2] Barbara Kaltenbacher,et al. Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems , 2011 .
[3] Kazufumi Ito,et al. On a semi-smooth Newton method and its globalization , 2009, Math. Program..
[4] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[5] Herbert Amann,et al. Nonautonomous Parabolic Equations Involving Measures , 2005 .
[6] G. M. Troianiello,et al. Elliptic Differential Equations and Obstacle Problems , 1987 .
[7] Boris Vexler,et al. Adaptive Finite Elements for Elliptic Optimization Problems with Control Constraints , 2008, SIAM J. Control. Optim..
[8] Arnd Rösch,et al. Error estimates for joint Tikhonov and Lavrentiev regularization of constrained control problems , 2009, 0909.4648.
[9] Roland Herzog,et al. Approximation of sparse controls in semilinear equations by piecewise linear functions , 2012, Numerische Mathematik.
[10] Alain Prignet,et al. Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures , 2007 .
[11] L. Qi,et al. A Survey of Some Nonsmooth Equations and Smoothing Newton Methods , 1999 .
[12] Wolfgang Hensgen. A simple proof of Singer’s representation theorem , 1996 .
[13] Roland Herzog,et al. Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional , 2012, SIAM J. Optim..
[14] Stephen M. Robinson,et al. Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..
[15] Karl Kunisch,et al. Optimal Control of the Undamped Linear Wave Equation with Measure Valued Controls , 2016, SIAM J. Control. Optim..
[16] Lutz Recke,et al. Linear Elliptic Boundary Value Problems with Non – Smooth Data: Normal Solvability on Sobolev – Campanato Spaces , 2001 .
[17] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[18] Karl Kunisch,et al. A measure space approach to optimal source placement , 2012, Comput. Optim. Appl..
[19] Anton Schiela,et al. Barrier Methods for Optimal Control Problems with State Constraints , 2009, SIAM J. Optim..
[20] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .
[21] Michael Hinze,et al. Convergence of a Finite Element Approximation to a State-Constrained Elliptic Control Problem , 2007, SIAM J. Numer. Anal..
[22] Fredi Tröltzsch,et al. On Finite Element Error Estimates for Optimal Control Problems with Elliptic PDEs , 2009, LSSC.
[23] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[24] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[25] Jérôme Droniou,et al. Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method , 2000, Advances in Differential Equations.
[26] Jean-Pierre Raymond,et al. Optimal pointwise control of semilinear parabolic equations , 2000 .
[27] Roland Becker,et al. Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.
[28] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[29] Karl Kunisch,et al. Optimal Control of Semilinear Elliptic Equations in Measure Spaces , 2014, SIAM J. Control. Optim..
[30] S. M. Robinson. Newton's method for a class of nonsmooth functions , 1994 .
[31] Andreas Günther,et al. An interior point algorithm with inexact step computation in function space for state constrained optimal control , 2011, Numerische Mathematik.
[32] Patricia Brunner,et al. A deterministic approach to the adapted optode placement for illumination of highly scattering tissue , 2012, Biomedical optics express.
[33] W. Wollner,et al. A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints , 2010, Comput. Optim. Appl..
[34] M. Fornasier,et al. Mean-Field Optimal Control , 2013, 1306.5913.
[35] J. Dieudonne. Foundations of Modern Analysis , 1969 .
[36] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[37] Jürgen Appell,et al. Nonlinear superposition operators: Preface , 1990 .
[38] Enrique Zuazua,et al. Sparse initial data identification for parabolic PDE and its finite element approximations , 2015 .
[39] Stephen J. Gardiner,et al. Classical Potential Theory , 2000 .
[40] Daniel Wachsmuth,et al. Update strategies for perturbed nonsmooth equations , 2008, Optim. Methods Softw..
[41] Herbert Amann,et al. Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.
[42] Otmar Scherzer,et al. Sparsity Regularization for Radon Measures , 2009, SSVM.
[43] Martin Weiser,et al. A control reduced primal interior point method for a class of control constrained optimal control problems , 2008, Comput. Optim. Appl..
[44] Michael Hintermüller,et al. Goal-Oriented Adaptivity in Pointwise State Constrained Optimal Control of Partial Differential Equations , 2010, SIAM J. Control. Optim..
[45] Enrique Zuazua,et al. Spike controls for elliptic and parabolic PDEs , 2013, Syst. Control. Lett..
[46] Carlos E. Kenig,et al. The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .
[47] V. Girault,et al. A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .
[48] Michael Ulbrich,et al. Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..
[49] F. Henneke. Sparse Time-Frequency Control of Bilinear Quantum Systems , 2015 .
[50] Karl Kunisch,et al. Approximation of Elliptic Control Problems in Measure Spaces with Sparse Solutions , 2012, SIAM J. Control. Optim..
[51] Daniel Ralph,et al. Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search , 1994, Math. Oper. Res..
[52] Joachim Rehberg,et al. Maximal parabolic regularity for divergence operators including mixed boundary conditions , 2008, 0903.0239.
[53] Michèle Vanmaele,et al. Some results in lumped mass finite-element approximation of eigenvalue problems using numerical quadrature formulas , 1992 .
[54] Ralf Kornhuber,et al. Nonsmooth Newton Methods for Set-Valued Saddle Point Problems , 2009, SIAM J. Numer. Anal..
[55] Michael Hintermüller,et al. Moreau-Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment , 2009, SIAM J. Numer. Anal..
[56] Michael Hintermüller,et al. Globalization of SQP-Methods in Control of the Instationary Navier-Stokes Equations , 2002 .
[57] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[58] Michael Hinze,et al. Hamburger Beiträge zur Angewandten Mathematik The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems ; implementation , convergence and globalization , 2022 .
[59] Wei Gong,et al. A Priori Error Analysis for Finite Element Approximation of Parabolic Optimal Control Problems with Pointwise Control , 2014, SIAM J. Control. Optim..
[60] Rolf Rannacher,et al. A Posteriori Error Estimation in PDE-constrained Optimization with Pointwise Inequality Constraints , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.
[61] Massimo Fornasier,et al. Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints , 2008, SIAM J. Numer. Anal..
[62] Anton Schiela. A Simplified Approach to Semismooth Newton Methods in Function Space , 2008, SIAM J. Optim..
[63] Alexandre Ern,et al. A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..
[64] Michael Hintermüller,et al. A SQP-Semismooth Newton-type Algorithm applied to Control of the instationary Navier--Stokes System Subject to Control Constraints , 2006, SIAM J. Optim..
[65] H. Alt. Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .
[66] Georg Stadler,et al. Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..
[67] Arnd Rösch,et al. Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..
[68] E. Casas. Control of an elliptic problem with pointwise state constraints , 1986 .
[69] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[70] Gerd Wachsmuth,et al. Convergence and regularization results for optimal control problems with sparsity functional , 2011 .
[71] W. Ziemer. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .
[72] Karl Kunisch,et al. Parabolic Control Problems in Measure Spaces with Sparse Solutions , 2013, SIAM J. Control. Optim..
[73] J. Daniel. The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .
[74] Eduardo Casas,et al. Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems , 2007, Adv. Comput. Math..
[75] N. Meyers. An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .
[76] K. Kunisch,et al. Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .
[77] Karl Kunisch,et al. Path-following Methods for a Class of Constrained Minimization Problems in Function Space , 2006, SIAM J. Optim..
[78] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[79] C. Carstensen. QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .
[80] Arnd Rösch,et al. Optimal Control of the Stokes Equations: A Priori Error Analysis for Finite Element Discretization with Postprocessing , 2006, SIAM J. Numer. Anal..
[81] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[82] Boris Vexler,et al. A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2019, Constrained Optimization and Optimal Control for Partial Differential Equations.
[83] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[84] Rolf Rannacher,et al. Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .
[85] J. Hiriart-Urruty,et al. Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .
[86] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[87] J. Rehberg,et al. Hölder Continuity and Optimal Control for Nonsmooth Elliptic Problems , 2009 .
[88] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[89] R. Rannacher,et al. Zur L∞-Konvergenz linearer finiter Elemente beim Dirichlet-Problem , 1976 .
[90] D. Lorenz,et al. Elastic-net regularization: error estimates and active set methods , 2009, 0905.0796.
[91] Ivan P. Gavrilyuk,et al. Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..
[92] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..
[93] S. Dirkse,et al. The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .
[94] Boris Vexler,et al. Numerical Sensitivity Analysis for the Quantity of Interest in PDE-Constrained Optimization , 2007, SIAM J. Sci. Comput..
[95] G. Stampacchia,et al. Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..
[96] Boris Vexler,et al. A Priori Error Analysis for Discretization of Sparse Elliptic Optimal Control Problems in Measure Space , 2013, SIAM J. Control. Optim..
[97] Herbert Amann,et al. Compact embeddings of vector valued Sobolev and Besov spaces , 2000 .
[98] Arnd Rösch,et al. Primal-Dual Active Set Strategy for a General Class of Constrained Optimal Control Problems , 2002, SIAM J. Optim..
[99] Dominik Meidner,et al. Adaptive Space-Time Finite Element Methods for Optimization Problems Governed by Nonlinear Parabolic Systems , 2007 .
[100] F. Gamboa,et al. Spike detection from inaccurate samplings , 2013, 1301.5873.
[101] H. Maurer,et al. On L1‐minimization in optimal control and applications to robotics , 2006 .
[102] Kazufumi Ito,et al. On the Choice of the Regularization Parameter in Nonlinear Inverse Problems , 1992, SIAM J. Optim..
[103] Eduardo Casas,et al. New regularity results and improved error estimates for optimal control problems with state constraints , 2014 .
[104] Carsten Gräser. Globalization of Nonsmooth Newton Methods for Optimal Control Problems , 2008 .
[105] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[106] Rolf Rannacher,et al. Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..
[107] Wen Shen,et al. A Multidimensional Optimal-Harvesting Problem with Measure-Valued Solutions , 2013, SIAM J. Control. Optim..
[108] A. Mart,et al. THEORETICAL AND NUMERICAL ANALYSIS OF AN OPTIMAL CONTROL PROBLEM RELATED TO WASTEWATER TREATMENT , 2000 .
[109] Boris Vexler,et al. Optimal A Priori Error Estimates of Parabolic Optimal Control Problems with Pointwise Control , 2013, SIAM J. Numer. Anal..
[110] S. Lang. Real and Functional Analysis , 1983 .
[111] Roland Becker,et al. Efficient numerical solution of parabolic optimization problems by finite element methods , 2007, Optim. Methods Softw..
[112] William W. Hager,et al. Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..
[113] J. L. Lions. 1. Pointwise Control for Distributed Systems , 1992 .
[114] Michael Hintermüller,et al. The Length of the Primal-Dual Path in Moreau-Yosida-Based Path-Following Methods for State Constrained Optimal Control , 2014, SIAM J. Optim..
[115] Karl Kunisch,et al. Time optimal control for a reaction diffusion system arising in cardiac electrophysiology – a monolithic approach , 2016 .
[116] Emmanuel J. Cand. Towards a Mathematical Theory of Super-Resolution , 2012 .
[117] Yurii Nesterov,et al. On first-order algorithms for l1/nuclear norm minimization , 2013, Acta Numerica.
[118] Robert Sandboge,et al. Adaptive Finite Element Methods for Reactive Flow Problems , 1996 .
[119] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[120] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control , 2013 .
[121] R. Rockafellar. Integrals which are convex functionals. II , 1968 .
[122] Karl Kunisch,et al. Feasible and Noninterior Path-Following in Constrained Minimization with Low Multiplier Regularity , 2006, SIAM J. Control. Optim..
[123] Fredi Tröltzsch,et al. Error estimates for linear-quadratic elliptic control problems , 2002, Analysis and Optimization of Differential Systems.
[124] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[125] R. Winther. Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .
[126] L. Evans. Measure theory and fine properties of functions , 1992 .
[127] Andreas Springer. Efficient Higher Order Discontinuous Galerkin Time Discretizations for Parabolic Optimal Control Problems , 2015 .
[128] Arnd Rösch,et al. Error estimates for linear-quadratic control problems with control constraints , 2006, Optim. Methods Softw..
[129] K. Bredies,et al. Inverse problems in spaces of measures , 2013 .
[130] Jean-Pierre Raymond,et al. Pontryagin's Principle for State-Constrained Control Problems Governed by Parabolic Equations with Unbounded Controls , 1998 .
[131] C. Meyer. Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints , 2008 .
[132] C. Meyer,et al. Uniqueness Criteria for the Adjoint Equation in State-Constrained Elliptic Optimal Control , 2011 .
[133] Kazufumi Ito,et al. The Primal-Dual Active Set Method for Nonlinear Optimal Control Problems with Bilateral Constraints , 2004, SIAM J. Control. Optim..
[134] W. Rudin. Real and complex analysis , 1968 .
[135] E. Casas. Pontryagin's Principle for State-Constrained Boundary Control Problems of Semilinear Parabolic Equations , 1997 .
[136] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[137] Boris Vexler,et al. A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints , 2009, Comput. Optim. Appl..
[138] E. Casas. L2 estimates for the finite element method for the Dirichlet problem with singular data , 1985 .
[139] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .