MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations

The Mars Atmosphere and Volatile EvolutioN mission (MAVEN), launched on 18 November 2013, is now in its primary science phase, orbiting Mars with a 4.5 h period. In this study, we use a time-dependent MHD model to interpret plasma observations made by MAVEN particle and field instruments. Detailed comparisons between the model and the relevant plasma observations from MAVEN are presented for an entire Mars rotation under relatively quiet solar wind conditions. Through comparison along MAVEN orbits, we find that the time-dependent multispecies single-fluid MHD model is able to reproduce the main features of the plasma environment around Mars. Using the model results, we find that photoionization beyond the terminator is the dominant ion source as compared with day-night transport in maintaining the nightside ionosphere. Model results also show that both the time-varying solar wind conditions and the continuously rotating crustal field work together to control the ion escape variation with time.

[1]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[2]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[3]  Accurate evaluation of the Chapman function for atmospheric attenuation , 2001 .

[4]  J. Connerney,et al.  The MAVEN Magnetic Field Investigation , 2015 .

[5]  B. Jakosky,et al.  MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .

[6]  Igor V. Sokolov,et al.  Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .

[7]  A. Nagy,et al.  On the effect of the martian crustal magnetic field on atmospheric erosion , 2008 .

[8]  J. Arkani‐Hamed A 50‐degree spherical harmonic model of the magnetic field of Mars , 2001 .

[9]  J. Maurer,et al.  The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission , 2015 .

[10]  R. Lin,et al.  Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization , 2009 .

[11]  S. A. Ledvina,et al.  Modeling and Simulating Flowing Plasmas and Related Phenomena , 2008 .

[12]  Martin Pätzold,et al.  Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS) , 2012 .

[13]  F. Smith,et al.  Numerical evaluation of Chapman's grazing incidence integral ch (X, χ) , 1972 .

[14]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[15]  A. Nagy,et al.  Martian ionospheric responses to dynamic pressure enhancements in the solar wind , 2014 .

[16]  Thomas E. Cravens,et al.  The Martian ionosphere in light of the Viking observations , 1978 .

[17]  Naoki Terada,et al.  A comparison of global models for the solar wind interaction with Mars , 2010 .

[18]  F. Leblanc,et al.  Some expected impacts of a solar energetic particle event at Mars , 2002 .

[19]  Quentin F. Stout,et al.  Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..

[20]  J. Fox Advances in the Aeronomy of Venus and Mars , 2002 .

[21]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[22]  C. Dieval,et al.  MARSIS observations of the Martian nightside ionosphere dependence on solar wind conditions , 2014 .

[23]  D. Mitchell,et al.  The global magnetic field of Mars and implications for crustal evolution , 2001 .

[24]  Paul Withers,et al.  A review of observed variability in the dayside ionosphere of Mars , 2009 .

[25]  A. Nagy,et al.  Electron impact ionization in the vicinity of comets , 1987 .

[26]  J. Chaufray,et al.  Modeling of Venus, Mars, and Titan , 2011 .

[27]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[28]  S. Barabash,et al.  Solar cycle effects on the ion escape from Mars , 2013 .

[29]  Christopher T. Russell,et al.  Effects of crustal field rotation on the solar wind plasma interaction with Mars , 2014 .

[30]  Bruce M. Jakosky,et al.  The Solar Wind Ion Analyzer for MAVEN , 2015 .