MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations
暂无分享,去创建一个
Gábor Tóth | Christopher T. Russell | Bruce M. Jakosky | Paul R. Mahaffy | J. P. McFadden | David L. Mitchell | Mehdi Benna | Andrew F. Nagy | Jasper S. Halekas | John E. P. Connerney | B. Jakosky | D. Mitchell | P. Mahaffy | J. Connerney | M. Benna | A. Nagy | G. Tóth | J. Halekas | J. Espley | J. Mcfadden | J. Connerney | X. Fang | J. Halekas | Yingjuan Ma | Y. J. Ma | Y. Dong | C. Russell | Xiaoliang Fang | Xiao-Hui Fang | Jared R. Espley | Y. Dong | Y. Ma | Yaxue Dong | P. Mahaffy | C. Russell | J. Mcfadden | D. Mitchell | G. Tóth | Anna Nagy
[1] P. Roe,et al. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .
[2] M. Kelley,et al. The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .
[3] Accurate evaluation of the Chapman function for atmospheric attenuation , 2001 .
[4] J. Connerney,et al. The MAVEN Magnetic Field Investigation , 2015 .
[5] B. Jakosky,et al. MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument , 2015 .
[6] Igor V. Sokolov,et al. Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .
[7] A. Nagy,et al. On the effect of the martian crustal magnetic field on atmospheric erosion , 2008 .
[8] J. Arkani‐Hamed. A 50‐degree spherical harmonic model of the magnetic field of Mars , 2001 .
[9] J. Maurer,et al. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission , 2015 .
[10] R. Lin,et al. Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization , 2009 .
[11] S. A. Ledvina,et al. Modeling and Simulating Flowing Plasmas and Related Phenomena , 2008 .
[12] Martin Pätzold,et al. Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS) , 2012 .
[13] F. Smith,et al. Numerical evaluation of Chapman's grazing incidence integral ch (X, χ) , 1972 .
[14] W. B. Hanson,et al. The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .
[15] A. Nagy,et al. Martian ionospheric responses to dynamic pressure enhancements in the solar wind , 2014 .
[16] Thomas E. Cravens,et al. The Martian ionosphere in light of the Viking observations , 1978 .
[17] Naoki Terada,et al. A comparison of global models for the solar wind interaction with Mars , 2010 .
[18] F. Leblanc,et al. Some expected impacts of a solar energetic particle event at Mars , 2002 .
[19] Quentin F. Stout,et al. Adaptive numerical algorithms in space weather modeling , 2012, J. Comput. Phys..
[20] J. Fox. Advances in the Aeronomy of Venus and Mars , 2002 .
[21] Dana Hurley Crider,et al. The plasma Environment of Mars , 2004 .
[22] C. Dieval,et al. MARSIS observations of the Martian nightside ionosphere dependence on solar wind conditions , 2014 .
[23] D. Mitchell,et al. The global magnetic field of Mars and implications for crustal evolution , 2001 .
[24] Paul Withers,et al. A review of observed variability in the dayside ionosphere of Mars , 2009 .
[25] A. Nagy,et al. Electron impact ionization in the vicinity of comets , 1987 .
[26] J. Chaufray,et al. Modeling of Venus, Mars, and Titan , 2011 .
[27] Ness,et al. Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.
[28] S. Barabash,et al. Solar cycle effects on the ion escape from Mars , 2013 .
[29] Christopher T. Russell,et al. Effects of crustal field rotation on the solar wind plasma interaction with Mars , 2014 .
[30] Bruce M. Jakosky,et al. The Solar Wind Ion Analyzer for MAVEN , 2015 .