Visual inspection of multivariate volume data based on multi-class noise sampling

Visualizing multivariate volume data is useful when the user wants to inspect the correlational distributions of multiple variables in a spatial field. Existing solutions commonly rely on color blending or weaving techniques to show multiple variables on a sampling point, probably causing heavy visual confusion. This paper presents an alternative solution that employs a multi-class sampling technique to generate spatially separated sampling points for multiple variables and illustrates the sampling points of each variable individually. We combine this new sampling scheme with the conventional direct volume rendering mode, iso-surface mode, and the cutting plane mode to support interactive inspection of volumetric distributions of multiple variables. The effectiveness of our approach is demonstrated with the IEEE VIS Contest 2004 Hurricane dataset and a 3D nuclear fusion simulation dataset.

[1]  J. Yellott Spectral consequences of photoreceptor sampling in the rhesus retina. , 1983, Science.

[2]  Victoria Interrante,et al.  Effectively visualizing multi-valued flow data using color and texture , 2003, IEEE Visualization, 2003. VIS 2003..

[3]  Hans-Peter Seidel,et al.  Multifield-Graphs: An Approach to Visualizing Correlations in Multifield Scalar Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[4]  Ares Lagae,et al.  A procedural object distribution function , 2005, TOGS.

[5]  Hu Xiaohui,et al.  A flexible capacitive tactile sensor array with micro structure for robotic application , 2014 .

[6]  Kwan-Liu Ma,et al.  An intelligent system approach to higher-dimensional classification of volume data , 2005, IEEE Transactions on Visualization and Computer Graphics.

[7]  Li-yi Wei Multi-class blue noise sampling , 2010 .

[8]  Dieter Schmalstieg,et al.  Procedural Texture Synthesis for Zoom‐Independent Visualization of Multivariate Data , 2012, Comput. Graph. Forum.

[9]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[10]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[11]  Li-Yi Wei Multi-class blue noise sampling , 2010, ACM Trans. Graph..

[12]  Roger Crawfis,et al.  Multivariate volume rendering , 1996 .

[13]  Victoria Interrante,et al.  Weaving versus blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color , 2006, APGV.

[14]  Chris R. Johnson Top Scientific Visualization Research Problems , 2004, IEEE Computer Graphics and Applications.

[15]  Yu-Ting Tsai,et al.  Generating Pointillism Paintings Based on Seurat's Color Composition , 2013, Comput. Graph. Forum.

[16]  Anton Alstes Wang Tiles for Image and Texture Generation , 2004 .

[17]  Gerik Scheuermann,et al.  Brushing of Attribute Clouds for the Visualization of Multivariate Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[18]  O. Deussen,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, SIGGRAPH 2009.

[19]  Han-Wei Shen,et al.  An Information-Aware Framework for Exploring Multivariate Data Sets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[20]  Daniel Weiskopf,et al.  Hue-Preserving Color Blending , 2009, IEEE Transactions on Visualization and Computer Graphics.

[21]  Helwig Hauser,et al.  Visualization of Multi‐Variate Scientific Data , 2009, Comput. Graph. Forum.

[22]  Klaus Mueller,et al.  A Data-Driven Approach to Hue-Preserving Color-Blending , 2012, IEEE Transactions on Visualization and Computer Graphics.

[23]  Hong Zhou,et al.  Scattering Points in Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[24]  Georgios Sakas,et al.  Data Intermixing and Multi‐volume Rendering , 1999, Comput. Graph. Forum.

[25]  Hiroshi Akibay,et al.  A tri-space visualization interface for analyzing time-varying multivariate volume data , 2007 .

[26]  Xavier Tricoche,et al.  Fast Extraction of High‐quality Crease Surfaces for Visual Analysis , 2011, Comput. Graph. Forum.

[27]  Dieter Schmalstieg,et al.  Noise-Based Volume Rendering for the Visualization of Multivariate Volumetric Data , 2013, IEEE Transactions on Visualization and Computer Graphics.

[28]  Alex T. Pang,et al.  Visualizing scalar volumetric data with uncertainty , 2002, Comput. Graph..

[29]  Xiaoru Yuan,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Scalable Multivariate Volume Visualization and Analysis Based on Dimension Projection and Parallel Coordinates , 2022 .

[30]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[31]  Xiaoru Yuan,et al.  Multi-dimensional transfer function design based on flexible dimension projection embedded in parallel coordinates , 2011, 2011 IEEE Pacific Visualization Symposium.

[32]  Min Chen,et al.  Spectral volume rendering using GPU-based raycasting , 2006, The Visual Computer.

[33]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[34]  Michael J. Doughty,et al.  ATLAS OF OPHTHALMIC SURGERY , 1991 .

[35]  Hans-Peter Seidel,et al.  Extraction of parallel vector surfaces in 3D time-dependent fields and application to vortex core line tracking , 2005, VIS 05. IEEE Visualization, 2005..

[36]  Han-Wei Shen,et al.  Multi-variate, Time Varying, and Comparative Visualization with Contextual Cues , 2006, IEEE Transactions on Visualization and Computer Graphics.

[37]  Jia Lu,et al.  Volumetric data modeling and analysis based on seven-directional box spline , 2013, Science China Information Sciences.

[38]  Kwan-Liu Ma,et al.  Visualizing Multivariate Volume Data from Turbulent Combustion Simulations , 2007, Computing in Science & Engineering.