Organic groups influencing microporosity in organosilicas

[1]  J. E. Elshof,et al.  Analyzing microporosity with vapor thermogravimetry and gas pycnometry , 2018 .

[2]  Masakoto Kanezashi,et al.  Gas permeation properties for organosilica membranes with different Si/C ratios and evaluation of microporous structures , 2017 .

[3]  J. E. ten Elshof,et al.  Influence of Monomer Connectivity, Network Flexibility, and Hydrophobicity on the Hydrothermal Stability of Organosilicas , 2017, Langmuir : the ACS journal of surfaces and colloids.

[4]  L. Winnubst,et al.  Long-term flexibility-based structural evolution and condensation in microporous organosilica membranes for gas separation , 2017 .

[5]  Toshinori Tsuru,et al.  Development of Ethenylene-Bridged Organosilica Membranes for Desalination Applications , 2016 .

[6]  Jincheng Du,et al.  Molecular dynamics simulations of nanoporous organosilicate glasses using Reactive Force Field (ReaxFF) , 2016 .

[7]  T. Tsuru,et al.  Permeation properties of BTESE–TEOS organosilica membranes and application to O2/SO2 gas separation , 2015 .

[8]  Jürgen Malzbender,et al.  Formation and prevention of fractures in sol-gel-derived thin films. , 2015, Soft matter.

[9]  Masakoto Kanezashi,et al.  CO2 Permeation through Hybrid Organosilica Membranes in the Presence of Water Vapor , 2014 .

[10]  Hiroki Nagasawa,et al.  Molecular dynamics simulation study on characterization of bis(triethoxysilyl)-ethane and bis(triethoxysilyl)ethylene derived silica-based membranes , 2013 .

[11]  T. Okuda,et al.  Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification. , 2013, ACS applied materials & interfaces.

[12]  A. Nijmeijer,et al.  From hydrophilic to hydrophobic HybSi® membranes: A change of affinity and applicability , 2013 .

[13]  Masakoto Kanezashi,et al.  Organic–Inorganic Hybrid Silica Membranes with Controlled Silica Network Size for Propylene/Propane Separation , 2012 .

[14]  T. Tsuru,et al.  Molecular simulation of micro-structures and gas diffusion behavior of organic–inorganic hybrid amorphous silica membranes , 2011 .

[15]  Masakoto Kanezashi,et al.  Preparation of organic–inorganic hybrid silica membranes using organoalkoxysilanes: The effect of pendant groups , 2011 .

[16]  J. E. ten Elshof,et al.  Tailoring the Separation Behavior of Hybrid Organosilica Membranes by Adjusting the Structure of the Organic Bridging Group , 2011 .

[17]  Masakoto Kanezashi,et al.  A molecular dynamics simulation of a homogeneous organic-inorganic hybrid silica membrane. , 2010, Chemical communications.

[18]  H. Imai,et al.  Porous superhydrophobic silica films by sol–gel process , 2010 .

[19]  J. E. ten Elshof,et al.  High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability , 2008 .

[20]  J. E. ten Elshof,et al.  Hybrid ceramic nanosieves: stabilizing nanopores with organic links. , 2008, Chemical communications.

[21]  Russell E. Morris,et al.  Pure Silica Zeolite-type Frameworks: A Structural Analysis , 2008 .

[22]  R. Dauskardt,et al.  Molecular Network Reinforcement of Sol–Gel Glasses , 2007 .

[23]  J. E. Elshof,et al.  Microporous structure and enhanced hydrophobicity in methylated SiO2 for molecular separation , 2007 .

[24]  K. Shea,et al.  Bridged polysilsesquioxanes. molecular-engineered hybrid organic-inorganic materials , 2001 .

[25]  K. Shea,et al.  Alkylene-bridged silsesquioxane sol-gel synthesis and xerogel characterization. Molecular requirements for porosity , 1993 .