A New Approach for the Statistical Thermodynamic Theory of the Nonextensive Systems Confined in Different Finite Traps

For a small system at a low temperature, thermal fluctuation and quantum effect play important roles in quantum thermodynamics. Starting from micro-canonical ensemble, we generalize the Boltzmann–Gibbs statistical factor from infinite to finite systems, no matter the interactions between particles are considered or not. This generalized factor, similar to Tsallis’s q-form as a power-law distribution, has the restriction of finite energy spectrum and includes the nonextensivities of the small systems. We derive the exact expression for distribution of average particle numbers in the interacting classical and quantum nonextensive systems within a generalized canonical ensemble. This expression in the almost independent or elementary excitation quantum finite systems is similar to the corresponding ones obtained from the conventional grand-canonical ensemble. In the reconstruction for the statistical theory of the small systems, we present the entropy of the equilibrium systems and equation of total thermal ...

[1]  B. von Issendorff,et al.  Negative heat capacity for a cluster of 147 sodium atoms. , 2001, Physical review letters.

[2]  Nonanalytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: an exactly solvable one-dimensional model for evaporation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Ilya Prigogine,et al.  Introduction to Thermodynamics of Irreversible Processes , 1967 .

[4]  Gert-Ludwig Ingold,et al.  Finite quantum dissipation: the challenge of obtaining specific heat , 2008, 0805.3974.

[5]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[6]  Peter Hänggi,et al.  Specific heat anomalies of open quantum systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  E. A. Cornell,et al.  Thermally Induced Losses in Ultra-Cold Atoms Magnetically Trapped Near Room-Temperature Surfaces , 2003 .

[8]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[9]  A. Gross,et al.  The entropy of a single large finite system undergoing both heat and work transfer , 2007 .

[10]  On the Mean-Field Spherical Model , 2005, cond-mat/0503046.

[11]  Wolfhard Janke,et al.  Microcanonical analyses of peptide aggregation processes. , 2006, Physical review letters.

[12]  Quantum thermodynamic functions for an oscillator coupled to a heat bath , 2007, quant-ph/0703152.

[13]  J. Alcaniz,et al.  Nonextensive effects on the relativistic nuclear equation of state , 2007, 0705.0300.

[14]  Fevzi Büyükkiliç,et al.  A fractal approach to entropy and distribution functions , 1993 .

[15]  T. L. Hill A Different Approach to Nanothermodynamics , 2001 .

[16]  D. Ben‐Amotz,et al.  Average entropy dissipation in irreversible mesoscopic processes. , 2006, Physical review letters.

[17]  U. Weiss Quantum Dissipative Systems , 1993 .

[18]  Hui-yi Tang,et al.  Nonanalyticities of thermodynamic functions in finite noninteracting Bose gases within an exact microcanonical ensemble. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  E. Elmaghraby On the Quantum Statistical Distributions Describing Finite Fermions and Bosons Systems , 2011 .

[20]  Phase transitions in “small” systems – A challenge for thermodynamics , 2000, cond-mat/0006087.

[21]  Daniel W. Hook,et al.  Quantum phase transitions without thermodynamic limits , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  T. L. Hill,et al.  Thermodynamics of Small Systems , 2002 .

[23]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[24]  R. Niven Non-asymptotic thermodynamic ensembles , 2008, 0807.4160.

[25]  Bose-Einstein and Fermi-Dirac distributions in nonextensive quantum statistics: exact and interpolation approaches. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  S. Jochim,et al.  Deterministic Preparation of a Tunable Few-Fermion System , 2011, Science.

[27]  C. P. Sun,et al.  Equivalence condition for the canonical and microcanonical ensembles in coupled spin systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Evans,et al.  Probability of second law violations in shearing steady states. , 1993, Physical review letters.

[29]  A. Acín,et al.  Local temperature in quantum thermal states , 2008, 0808.0102.

[30]  R. Clausius The Mechanical Theory Of Heat , 1879 .

[31]  F. Marchesoni,et al.  Artificial Brownian motors: Controlling transport on the nanoscale , 2008, 0807.1283.

[32]  Gert-Ludwig Ingold,et al.  Quantum Brownian motion: The functional integral approach , 1988 .

[33]  Debra J Searles,et al.  Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. , 2002, Physical review letters.

[34]  A. Torcini,et al.  EQUILIBRIUM AND DYNAMICAL PROPERTIES OF TWO-DIMENSIONAL N-BODY SYSTEMS WITH LONG-RANGE ATTRACTIVE INTERACTIONS , 1999 .

[35]  Coupled negative magnetocapacitance and magnetic susceptibility in a Kagomé staircase-like compound Co3V2O8 , 2006, cond-mat/0612335.

[36]  F. Dalfovo,et al.  Bose–Einstein Condensates , 2006 .

[37]  Boghosian Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  A. R. Plastino,et al.  On the cut-off prescriptions associated with power-law generalized thermostatistics , 2005 .

[39]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[40]  A. M. Fennimore,et al.  Rotational actuators based on carbon nanotubes , 2003, Nature.

[41]  P. Hänggi,et al.  Quantum Transport and Dissipation , 1998 .

[42]  Solomon,et al.  Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. , 1993, Physical review letters.

[43]  Stefan Hilbert,et al.  Phase transitions in small systems: Microcanonical vs. canonical ensembles , 2006 .

[44]  Jianhui Wang,et al.  Condensate fluctuations of interacting Bose gases within a microcanonical ensemble. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[46]  A. Maisels,et al.  Higher surface energy of free nanoparticles. , 2003, Physical review letters.

[47]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2010, Nature.

[48]  A. R. Plastino,et al.  Thermodynamic Consistency of the $q$-Deformed Fermi-Dirac Distribution in Nonextensive Thermostatics , 2010, 1006.3963.

[49]  G. Ingold Path Integrals and Their Application to Dissipative Quantum Systems , 2002, quant-ph/0208026.

[50]  T. Shinohara,et al.  Surface ferromagnetism of Pd fine particles. , 2003, Physical review letters.

[51]  T. Tsong,et al.  Observation of finite-size effects on a structural phase transition of 2D nanoislands. , 2004, Physical review letters.

[52]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  P. Chomaz,et al.  The challenges of finite-system statistical mechanics , 2006 .

[54]  Jianping Gao,et al.  Layering Transitions and Dynamics of Confined Liquid Films , 1997 .

[55]  P. Talkner,et al.  Quantum theory of the damped harmonic oscillator , 1984 .

[56]  White,et al.  Single-particle distributions for small hard particle systems in the microcanonical and in the molecular-dynamics ensembles. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  J. E. Thomas,et al.  Measurement of the entropy and critical temperature of a strongly interacting Fermi gas. , 2006, Physical review letters.

[58]  Ray,et al.  Small systems have non-Maxwellian momentum distributions in the microcanonical ensemble. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[59]  Jose S. Andrade,et al.  Tsallis thermostatistics for finite systems: a Hamiltonian approach , 2003 .

[60]  C. Jarzynski Hamiltonian Derivation of a Detailed Fluctuation Theorem , 1999, cond-mat/9908286.

[61]  J. D. Medeiros,et al.  Observational measurement of open stellar clusters: A test of Kaniadakis and Tsallis statistics , 2010 .

[62]  Jan Naudts,et al.  On the Thermodynamics of Classical Micro-Canonical Systems , 2010, Entropy.

[63]  R. Feynman,et al.  The Theory of a general quantum system interacting with a linear dissipative system , 1963 .

[64]  H L Swinney,et al.  Measuring nonextensitivity parameters in a turbulent Couette-Taylor flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  A. Plastino From Gibbs microcanonical ensemble to Tsallis generalized canonical distribution , 1994 .

[66]  Debra J. Searles,et al.  The Fluctuation Theorem , 2002 .

[67]  Kudrolli,et al.  Non-gaussian velocity distributions in excited granular matter in the absence of clustering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  R. Levine,et al.  A mechanical representation of entropy for a large finite system. , 2006, The Journal of chemical physics.

[69]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[70]  P. Talkner,et al.  Thermodynamic anomalies in open quantum systems: Strong coupling effects in the isotropic XY model , 2010, 1010.2620.

[71]  H. Hasegawa Specific heat and entropy of N-body nonextensive systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  M. P. Almeida Thermodynamical entropy (and its additivity) within generalized thermodynamics , 2003 .

[73]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[75]  G. W. Ford,et al.  Quantum oscillator in a blackbody radiation field II. Direct calculation of the energy using the fluctuation-dissipation theorem , 1988 .

[76]  T. Pruschke,et al.  Anomaly in the heat capacity of Kondo superconductors , 2008, 0811.1340.

[77]  L. Cheuk,et al.  Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas , 2011, Science.

[78]  H. Posch,et al.  STATISTICAL MECHANICS AND COMPUTER SIMULATION OF SYSTEMS WITH ATTRACTIVE POSITIVE POWER-LAW POTENTIALS , 1998 .

[79]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[80]  Scale-invariance of galaxy clustering , 1997, astro-ph/9711073.

[81]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[82]  J. Schmelzer,et al.  On the definition of temperature and its fluctuations in small systems. , 2010, The Journal of chemical physics.