Splitting for Multi-objective Optimization

We introduce a new multi-objective optimization (MOO) methodology based the splitting technique for rare-event simulation. The method generalizes the elite set selection of the traditional splitting framework, and uses both local and global sampling to sample in the decision space. In addition, an 𝜖-dominance method is employed to maintain good solutions. The algorithm was compared with state-of-the art MOO algorithms using a prevailing set of benchmark problems. Numerical experiments demonstrate that the new algorithm is competitive with the well-established MOO algorithms and that it can outperform the best of them in various cases.

[1]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[2]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[3]  Dirk P. Kroese,et al.  Efficient Monte Carlo simulation via the generalized splitting method , 2012, Stat. Comput..

[4]  Hussein A. Abbass,et al.  Adaptive Cross-Generation Differential Evolution Operators for Multiobjective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[5]  Hai-Lin,et al.  The multiobjective evolutionary algorithm based on determined weight and sub-regional search , 2009, 2009 IEEE Congress on Evolutionary Computation.

[6]  Dirk P. Kroese,et al.  An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting , 2008 .

[7]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[8]  Zhijian Wu,et al.  Performance assessment of DMOEA-DD with CEC 2009 MOEA competition test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[9]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  Qingfu Zhang,et al.  The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances , 2009, 2009 IEEE Congress on Evolutionary Computation.

[11]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[12]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[13]  Dirk P. Kroese,et al.  Splitting for optimization , 2016, Comput. Oper. Res..

[14]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[15]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[16]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[17]  Zdravko Botev The Generalized Splitting method for Combinatorial Counting and Static Rare-Event Probability Estimation , 2009 .

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[20]  Reza Akbari,et al.  A multi-objective artificial bee colony algorithm , 2012, Swarm Evol. Comput..

[21]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[22]  Adnan Acan,et al.  Multi-objective optimization with cross entropy method: Stochastic learning with clustered pareto fronts , 2007, 2007 IEEE Congress on Evolutionary Computation.

[23]  Chun Chen,et al.  Multiple trajectory search for unconstrained/constrained multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[24]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[25]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms , 1993 .

[26]  Morteza Marzjarani,et al.  Simulation and the Monte Carlo Method (3rd ed.) , 2019, Technometrics.

[27]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .