On Cyclic Convolutional Codes

We investigate the notion of cyclicity for convolutional codes as it has been introduced by Piret and Roos. Codes of this type are described as submodules of F[z]n with some additional generalized cyclic structure but also as specific left ideals in a skew polynomial ring. Extending a result of Piret, we show in a purely algebraic setting that these ideals are always principal. This leads to the notion of a generator polynomial just like for cyclic block codes. Similarly a parity check polynomial can be introduced by considering the right annihilator ideal. An algorithmic procedure is developed which produces unique reduced generator and parity check polynomials. We also show how basic code properties and a minimal generator matrix can be read off from these objects. A close link between polynomial and vector description of the codes is provided by certain generalized circulant matrices.

[1]  B. Langfeld,et al.  On the Parameters of Convolutional Codes with Cyclic Structure , 2003 .

[2]  Heide Gluesing-Luerssen,et al.  Some Small Cyclic Convolutional Codes , 2002 .

[3]  James L. Massey,et al.  Inverses of Linear Sequential Circuits , 1968, IEEE Transactions on Computers.

[4]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[5]  Jørn Justesen Bounded distance decoding of unit memory codes , 1993, IEEE Trans. Inf. Theory.

[6]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[7]  Joachim Rosenthal,et al.  Constructions of MDS-convolutional codes , 2001, IEEE Trans. Inf. Theory.

[8]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[9]  P. Piret,et al.  Structure and constructions of cyclic convolutional codes , 1976, IEEE Trans. Inf. Theory.

[10]  Heide Gluesing-Luerssen,et al.  Distance Bounds for Convolutional Codes and Some Optimal Codes , 2003 .

[11]  Pierre A. Von Kaenel Generators of principal left ideals in a noncommutative algebra , 1981 .

[12]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[13]  M. Ventou Automorphisms and Isometries of Some Modular Algebras , 1985, AAECC.

[14]  Joachim Rosenthal,et al.  On behaviors and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[15]  J. Massey,et al.  Codes, automata, and continuous systems: Explicit interconnections , 1967, IEEE Transactions on Automatic Control.

[16]  Kees Roos On the structure of convolutional and cyclic convolutional codes , 1979, IEEE Trans. Inf. Theory.

[17]  Av . Van Becelaere A CONVOLUTIONAL EQUIVALENT TO REED- SOLOMON CODES , 1988 .

[18]  Anton Betten,et al.  Codierungstheorie : Konstruktion und Anwendung linearer Codes , 1998 .

[19]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[20]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[21]  F. R. Gantmakher The Theory of Matrices , 1984 .

[22]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[23]  Joachim Rosenthal,et al.  Connections between linear systems and convolutional codes , 2000, math/0005281.

[24]  R. Tennant Algebra , 1941, Nature.

[25]  P. M. Cohn,et al.  Algebra, Volume 2 , 1978 .

[26]  Joachim Rosenthal,et al.  Maximum Distance Separable Convolutional Codes , 1999, Applicable Algebra in Engineering, Communication and Computing.

[27]  Philippe Piret A convolutional equivalent to Reed-Solomon codes , 1988 .

[28]  Kjell Jørgen Hole On classes of convolutional codes that are not asymptotically catastrophic , 2000, IEEE Trans. Inf. Theory.

[29]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[30]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .