Modeling of hydrochemistry evolution in carbonatic–siliciclastic aquifer system in coastal environment

[1]  Maria da Glória Gonçalves da Silva-Cunha,et al.  Considerações ecológicas sobre o fitoplâncton da baía do Guajará e foz do rio Guamá (Pará, Brasil) , 2006, Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais.

[2]  H. K. Chang,et al.  Rock-solute reaction mass balance of water flowing within an aquifer system with geochemical stratification , 2020 .

[3]  D. Ouazar,et al.  Assessment of groundwater mineralization of alluvial coastal aquifer of essaouira basin (Morocco) using the hydrochemical facies evolution diagram (HFE-Diagram) , 2020 .

[4]  J. Kirchner,et al.  Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion , 2020, Nature Communications.

[5]  A. Hendy,et al.  Palaeontological framework from Pirabas Formation (North Brazil) used as potential model for equatorial carbonate platform , 2020 .

[6]  A. Nogueira,et al.  The crustaceans burrow Sinusichnus sinuosus from the Oligocene-Miocene carbonate deposits of eastern Amazonia , 2020 .

[7]  E. Teramoto,et al.  Nitrato em águas subterrâneas do Estado de São Paulo , 2019 .

[8]  Elena Giménez‐Forcada Use of the Hydrochemical Facies Diagram (HFE-D) for the evaluation of salinization by seawater intrusion in the coastal Oropesa Plain: Comparative analysis with the coastal Vinaroz Plain, Spain , 2019 .

[9]  E. Vasileiou,et al.  Hydrogeochemical assessment and suitability of groundwater in a typical Mediterranean coastal area: A case study of the Marathon basin, NE Attica, Greece , 2019 .

[10]  J. Tarhouni,et al.  Implications of groundwater development and seawater intrusion for sustainability of a Mediterranean coastal aquifer in Tunisia , 2019, Environmental Monitoring and Assessment.

[11]  H. K. Chang,et al.  Monitoring of nitrate contamination in groundwater: case study of the campus of UNESP, Rio Claro/SP , 2019, Ciência e Natura.

[12]  M. Polemio,et al.  A multidisciplinary approach for sustainable management of a complex coastal plain: The case of Sibari Plain (Southern Italy) , 2019, Marine and Petroleum Geology.

[13]  T. Sonnenborg,et al.  Origin and Dynamics of Saltwater Intrusion in a Regional Aquifer: Combining 3‐D Saltwater Modeling With Geophysical and Geochemical Data , 2019, Water Resources Research.

[14]  M. L. da Costa,et al.  Rainwater geochemistry inside the Barcarena power station at the mouth of the Tocantins River , 2018, Environmental technology.

[15]  R. Aravena,et al.  Reactive and Mixing Processes Governing Ammonium and Nitrate Coexistence in a Polluted Coastal Aquifer , 2018, Geosciences.

[16]  L. Alves,et al.  Multi-layered water resources, management, and uses under the impacts of global changes in a southern coastal metropolis: When will it be already too late? Crossed analysis in Recife, NE Brazil. , 2018, The Science of the total environment.

[17]  B. Agoubi,et al.  Groundwater salinization and seawater intrusion tracing based on Lithium concentration in the shallow aquifer of Jerba Island, southeastern Tunisia , 2018 .

[18]  M. Van Camp,et al.  Hydrochemistry in coastal aquifer of southwest Bangladesh: origin of salinity , 2018, Environmental Earth Sciences.

[19]  R. Chesnaux,et al.  The influence of water/rock − water/clay interactions and mixing in the salinization processes of groundwater , 2017 .

[20]  M. Sridharan,et al.  Hydrochemical Facies and Ionic Exchange in Coastal Aquifers of Puducherry Region, India: Implications for Seawater Intrusion , 2017, Earth Systems and Environment.

[21]  P. Pujari,et al.  Impact of on-site sanitation systems on groundwater sources in a coastal aquifer in Chennai, India , 2017, Environmental Science and Pollution Research.

[22]  P. Kumar Deciphering the groundwater–saline water interaction in a complex coastal aquifer in South India using statistical and hydrochemical mixing models , 2016 .

[23]  P. J. Sajil Kumar Deciphering the groundwater–saline water interaction in a complex coastal aquifer in South India using statistical and hydrochemical mixing models , 2016, Modeling Earth Systems and Environment.

[24]  F. Gentile,et al.  Modelling and management of a Mediterranean karstic coastal aquifer under the effects of seawater intrusion and climate change , 2015, Environmental Earth Sciences.

[25]  Thomas Kalbacher,et al.  Reactive transport codes for subsurface environmental simulation , 2015, Computational Geosciences.

[26]  D. Rossetti,et al.  Late Oligocene–Miocene transgressions along the equatorial and eastern margins of Brazil , 2013 .

[27]  J. T. Guimarães,et al.  Neogene Eastern Amazon carbonate platform and the palaeoenvironmental interpretation , 2013, Swiss Journal of Palaeontology.

[28]  George Kourakos,et al.  Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management. , 2013 .

[29]  Seong Taek Yun,et al.  Mélange d'eau de mer et d'eau douce et dissolution résultante de la calcite , 2012 .

[30]  G. Chae,et al.  Seawater–freshwater mixing and resulting calcite dissolution: an example from a coastal alluvial aquifer in eastern South Korea , 2012 .

[31]  A. Christiansen,et al.  Origin and extent of fresh groundwater, salty paleowaters and recent saltwater intrusions in Red River flood plain aquifers, Vietnam , 2012, Hydrogeology Journal.

[32]  J. Martinelli-Lemos,et al.  Biodiversity of decapod crustaceans in the estuarine floodplain around the city of Belém (Pará) in Brazilian Amazonia , 2012 .

[33]  G. Ferguson,et al.  Vulnerability of coastal aquifers to groundwater use and climate change , 2012 .

[34]  Dongmei Han,et al.  Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China , 2011 .

[35]  J. Cruz,et al.  Groundwater salinization in the Azores archipelago (Portugal) , 2011 .

[36]  C. Simmons,et al.  Current Practice and Future Challenges in Coastal Aquifer Management: Flux-Based and Trigger-Level Approaches with Application to an Australian Case Study , 2011 .

[37]  O. Sivan,et al.  Hydrogeochemical tool to identify salinization or freshening of coastal aquifers determined from combined field work, experiments, and modeling. , 2010, Environmental science & technology.

[38]  E. Custodio,et al.  State of knowledge of coastal aquifer management in South America , 2010 .

[39]  D. F. Rossetti,et al.  Datação de Sedimentos Pós-Barreiras no Norte do Brasil: implicações paleogeográficas , 2008 .

[40]  G. Panagopoulos,et al.  Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece , 2007 .

[41]  D. F. Rossetti Evolução sedimentar miocênica nos estados do Pará e Maranhão , 2006 .

[42]  B. Capaccioni,et al.  Saline intrusion and refreshening in a multilayer coastal aquifer in the Catania Plain (Sicily, Southern Italy): dynamics of degradation processes according to the hydrochemical characteristics of groundwaters , 2005 .

[43]  H. Behling,et al.  Mineralogy, geochemistry, and palynology of modern and late Tertiary mangrove deposits in the Barreiras Formation of Mosqueiro Island, northeastern Pará state, eastern Amazonia , 2004 .

[44]  D. Rossetti,et al.  Facies architecture in a tectonically influenced estuarine incised valley fill of Miocene age, northern Brazil , 2004 .

[45]  D. F. Rossetti,et al.  Estratigrafia da sucessão sedimentar Pós-Barreiras (Zona Bragantina, Pará) com base em radar de penetração no solo , 2001 .

[46]  D. Rossetti Late Cenozoic sedimentary evolution in northeastern Pará, Brazil, within the context of sea level changes , 2001 .

[47]  D. Rossetti Influence of low amplitude/high frequency relative sea-level changes in a wave-dominated estuary (Miocene), São Luis Basin, northern Brazil , 2000 .

[48]  Kei Sato,et al.  Crustal evolution of the south american platform , 2000 .

[49]  Peter Mann de Toledo,et al.  Modelo deposicional preliminar da Formacao Pirabas no nordeste do Estado do Para , 1990 .

[50]  S. Petri Foraminíferos Miocênicos da formação Pirabas , 1957 .