On local modularity variants and -institutions

Abstract We examine some variants of modularity (preservation of faithfulness) by localizing them to a commutative diagram in a Π -institution. We address, by means of an algebraic approach, the question of when a specification is modular for a given pair of specifications. Motivated by design considerations, we extend this notion to families, which leads to simpler variants, with decoupled connections.

[1]  José Luiz Fiadeiro,et al.  Structuring Theories on Consequence , 1988, ADT.

[2]  PAULO A. S. VELOSO,et al.  A New, Simpler Proof of the Modularisation Theorem for Logical Specifications , 1993, Log. J. IGPL.

[3]  Theodosis Dimitrakos Parameterising (algebraic) specifications on diagrams , 1998, Proceedings 13th IEEE International Conference on Automated Software Engineering (Cat. No.98EX239).

[4]  T. S. E. Maibaum,et al.  Axiomatizing Specification Theory , 1984, ADT.

[5]  Władysław Turski,et al.  The specification of computer programs , 1987 .

[6]  Andrzej Tarlecki,et al.  Bits and Pieces of the Theory of Institutions , 1985, ADT.

[7]  Petros S. Stefaneas,et al.  Logical support for modularisation , 1993 .

[8]  Jan A. Bergstra,et al.  Module algebra , 1990, JACM.

[9]  T. S. E. Maibaum,et al.  On the Modularization Theorem for Logical Specifications , 1995, Inf. Process. Lett..

[10]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[11]  Donald Sannella,et al.  Extended ML: Past, Present, and Future , 1990, ADT.

[12]  P. H. Lindsay Human Information Processing , 1977 .

[13]  Paulo A. S. Veloso On Pushout Consistency, Modularity and Interpolation for Logical Specifications , 1996, Inf. Process. Lett..

[14]  Mehdi T. Harandi,et al.  Workshop on software specification and design , 1988, SOEN.

[15]  José Luiz Fiadeiro,et al.  Generalising Interpretations between Theories in the context of (pi-) Institutions , 1993, Theory and Formal Methods.