Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice

[1]  L. Biesecker,et al.  Clinical management of patients with ASXL1 mutations and Bohring–Opitz syndrome, emphasizing the need for Wilms tumor surveillance , 2015, American journal of medical genetics. Part A.

[2]  R. Chen,et al.  Epigenetic memory gained by priming with osteogenic induction medium improves osteogenesis and other properties of mesenchymal stem cells , 2015, Scientific Reports.

[3]  Jocelyn T. Compton,et al.  Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential , 2015, Cell.

[4]  S. Morrison,et al.  Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. , 2014, Cell stem cell.

[5]  Gary D. Bader,et al.  Enrichment Map – a Cytoscape app to visualize and explore OMICs pathway enrichment results , 2014, F1000Research.

[6]  Keisuke Ito,et al.  Metabolic requirements for the maintenance of self-renewing stem cells , 2014, Nature Reviews Molecular Cell Biology.

[7]  Zhaomin Li,et al.  Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice. , 2014, Blood.

[8]  C. Mason,et al.  Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo , 2013, The Journal of experimental medicine.

[9]  F. Barry,et al.  Mesenchymal stem cells in joint disease and repair , 2013, Nature Reviews Rheumatology.

[10]  I. Bruns,et al.  PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion , 2013, The Journal of experimental medicine.

[11]  Iannis Aifantis,et al.  ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. , 2012, Cancer cell.

[12]  N. Park,et al.  Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. , 2012, Cell stem cell.

[13]  G. Scarano,et al.  Two novel patients with Bohring–Opitz syndrome caused by de novo ASXL1 mutations , 2012, American journal of medical genetics. Part A.

[14]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[15]  A. Robling,et al.  The Haploinsufficient Hematopoietic Microenvironment Is Critical to the Pathological Fracture Repair in Murine Models of Neurofibromatosis Type 1 , 2011, PloS one.

[16]  L. Vissers,et al.  De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome , 2011, Nature Genetics.

[17]  J. Tolmie,et al.  Bohring–Opitz (Oberklaid–Danks) syndrome: clinical study, review of the literature, and discussion of possible pathogenesis , 2011, European Journal of Human Genetics.

[18]  Gary D Bader,et al.  Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation , 2010, PloS one.

[19]  S. Teitelbaum Stem cells and osteoporosis therapy. , 2010, Cell stem cell.

[20]  S. Yoon,et al.  Additional Sex Comb-like (ASXL) Proteins 1 and 2 Play Opposite Roles in Adipogenesis via Reciprocal Regulation of Peroxisome Proliferator-activated Receptor γ* , 2010, The Journal of Biological Chemistry.

[21]  C. Rosen,et al.  PPARγ: a circadian transcription factor in adipogenesis and osteogenesis , 2010, Nature Reviews Endocrinology.

[22]  W. Reik,et al.  Epigenetic Reprogramming in Plant and Animal Development , 2010, Science.

[23]  L. McCauley c-Maf and you won't see fat. , 2010, The Journal of clinical investigation.

[24]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[25]  Gary D Bader,et al.  Functional impact of global rare copy number variation in autism spectrum disorders , 2010, Nature.

[26]  M. Wilm,et al.  Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB , 2010, Nature.

[27]  M. Cazzola,et al.  Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia , 2010, Leukemia.

[28]  Jianhua Guo,et al.  Genome-Wide Analysis of Histone H3 Lysine9 Modifications in Human Mesenchymal Stem Cell Osteogenic Differentiation , 2009, PloS one.

[29]  D. Birnbaum,et al.  Mutations of ASXL1 gene in myeloproliferative neoplasms , 2009, Leukemia.

[30]  Ichiro Takada,et al.  Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis , 2009, Nature Reviews Rheumatology.

[31]  Daniel Birnbaum,et al.  Mutations of polycomb‐associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia , 2009, British journal of haematology.

[32]  J. Pollard,et al.  Microenvironmental regulation of metastasis , 2009, Nature Reviews Cancer.

[33]  A. Uccelli,et al.  Mesenchymal stem cells in health and disease , 2008, Nature Reviews Immunology.

[34]  P. Bianco,et al.  Mesenchymal stem cells: revisiting history, concepts, and assays. , 2008, Cell stem cell.

[35]  Eran Segal,et al.  Module map of stem cell genes guides creation of epithelial cancer stem cells. , 2008, Cell stem cell.

[36]  R. Sambasivan,et al.  Skeletal muscle stem cell birth and properties. , 2007, Seminars in cell & developmental biology.

[37]  W. Reik Stability and flexibility of epigenetic gene regulation in mammalian development , 2007, Nature.

[38]  Menggang Yu,et al.  Neurofibromin plays a critical role in modulating osteoblast differentiation of mesenchymal stem/progenitor cells. , 2006, Human molecular genetics.

[39]  S. Um,et al.  Additional Sex Comb-like 1 (ASXL1), in Cooperation with SRC-1, Acts as a Ligand-dependent Coactivator for Retinoic Acid Receptor* , 2006, Journal of Biological Chemistry.

[40]  G. Zampino,et al.  New cases of Bohring–Opitz syndrome, update, and critical review of the literature , 2006, American journal of medical genetics. Part A.

[41]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Robling,et al.  Inhibition of the serotonin (5-hydroxytryptamine) transporter reduces bone accrual during growth. , 2005, Endocrinology.

[43]  M. Pittenger,et al.  Multilineage potential of adult human mesenchymal stem cells. , 1999, Science.

[44]  D. Danks,et al.  The Opitz trigonocephaly syndrome. A case report. , 1975, American journal of diseases of children.

[45]  M. Hung,et al.  CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells , 2011, Nature Cell Biology.

[46]  J. Hess,et al.  Additional sex combs-like 1 belongs to the enhancer of trithorax and polycomb group and genetically interacts with Cbx2 in mice. , 2010, Developmental biology.

[47]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.