Stability and convergence of a finite element method for a semilinear elliptical problem with small viscosity

Abstract In this paper, we propose and analyze a new finite element method for a semilinear elliptical problem with small viscosity. Firstly, we prove the existence and uniqueness of solution for its variational problem. Then, we obtain the stability and convergence of the corresponding finite element Galerkin approximation. Furthermore, we derive the optimal error estimates in the L 2 and H 1 norms for the finite element approximations respectively. Finally, several numerical experiments are provided to confirm the above theoretical results.

[1]  Y. Choi,et al.  A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .

[2]  Vivette Girault,et al.  Two-grid finite-element schemes for the transient Navier-Stokes problem , 2001 .

[3]  Liquan,et al.  FULL DISCRETE TWO-LEVEL CORRECTION SCHEME FOR NAVIER-STOKES EQUATIONS , 2008 .

[4]  R. Temam,et al.  Asymptotic analysis of Oseen type equations in a channel at small viscosity , 1996 .

[5]  Cheng Yu-min,et al.  Boundary element-free method for elastodynamics , 2005 .

[6]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[7]  Yinnian He,et al.  Two-Level Newton’s Method for Nonlinear Elliptic PDEs , 2013, J. Sci. Comput..

[8]  R. Nussbaum Positive solutions of nonlinear elliptic boundary value problems , 1975 .

[9]  G. A. Afrouzi,et al.  A numerical method to find positive solution of semilinear elliptic Dirichlet problems , 2006, Appl. Math. Comput..

[10]  Leopoldo P. Franca,et al.  On a two‐level finite element method for the incompressible Navier–Stokes equations , 2000 .

[11]  Yinnian He,et al.  Stability and convergence of iterative methods related to viscosities for the 2D/3D steady Navier–Stokes equations☆ , 2015 .

[12]  Huoyuan Duan,et al.  Analysis of the small viscosity and large reaction coefficient in the computation of the generalized Stokes problem by a novel stabilized finite element method , 2014 .

[13]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[14]  Peter Monk,et al.  Finite Element Methods for Maxwell's Equations , 2003 .

[15]  Yinnian He,et al.  P1-Nonconforming Quadrilateral Finite Volume Methods for the Semilinear Elliptic Equations , 2012, J. Sci. Comput..

[16]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[17]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[18]  Goong Chen,et al.  A high-linking algorithm for sign-changing solutions of semilinear elliptic equations , 1999 .

[19]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[20]  Jianxin Zhou,et al.  Algorithms and Visualization for solutions of nonlinear Elliptic equations , 2000, Int. J. Bifurc. Chaos.

[21]  Y. Choi,et al.  A mountain pass method for the numerical solution of semilinear wave equations , 1993 .

[22]  Yinnian He,et al.  Some iterative finite element methods for steady Navier-Stokes equations with different viscosities , 2013, J. Comput. Phys..

[23]  Yinnian He,et al.  A posteriori error analysis for finite element solution of one-dimensional elliptic differential equations using equidistributing meshes , 2009, J. Comput. Appl. Math..