Characterization of special fibers and fiber devices

Methods for characterizing birefringent fibers (both those with high circular or linear birefringence and those with negligible intrinsic birefringence) are presented, and their relative merits are discussed. Fibers with high nonlinear coefficients exhibit interesting optical phenomena, and methods are developed to determine second harmonic, Pockels and Kerr effects, parametric phenomena, and the Verdet constant of silica and higher-loss, nonsilica fibers. Fibers containing rare-earth ions are of interest both as active (laser and amplifiers) and passive systems. Techniques are developed to characterize these devices, and conventional methods are modified to quantify dopant parameters within the fiber. Techniques for the measurement of the diverse properties of all these different fibers are presented with results, and, where appropriate, the problems with their characterization are discussed. >

[1]  C. G. Atkins,et al.  Spectroscopic studies of Er 3+ -doped single-mode silica fiber , 1987 .

[2]  R. Dyott,et al.  Preservation of polarisation in optical-fibre waveguides with elliptical cores , 1979 .

[3]  David N. Payne,et al.  Neodymium-doped silica single-mode fibre lasers , 1985 .

[4]  Takashi Handa,et al.  Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass , 1986 .

[5]  Y. Sasaki,et al.  Polarization-maintaining and absorption-reducing fibers , 1982 .

[6]  V. Gapontsev,et al.  Channels of energy losses in erbium laser glasses in the stimulated emission process , 1983 .

[7]  D. C. Hanna,et al.  Efficient operation of an Yb-sensitised Er fibre laser at 1.56 mu m , 1988 .

[8]  S. Rashleigh Measurement of fiber birefringence by wavelength scanning: effect of dispersion. , 1983, Optics letters.

[9]  Osamu Fukuda,et al.  Ultralow-crosstalk polarization-maintaining optical fiber in a short-length operation , 1986 .

[10]  R. D. Birch,et al.  Fabrication and characterisation of circularly birefringent helical fibres , 1987 .

[11]  David N. Payne,et al.  Fabrication of polarisation-maintaining fibres using gas-phase etching , 1982 .

[12]  Simon Poole,et al.  Spectral variation of excited state absorption in neodymium doped fibre lasers , 1988 .

[13]  David N. Payne,et al.  Current sensors using highly birefringent bow-tie fibres , 1986 .

[14]  David N. Payne,et al.  Single-longitudinal-mode operation of an Nd3+-doped fibre laser , 1988 .

[15]  M. J. Pettitt,et al.  System performance of optical fibre preamplifier , 1989 .

[16]  A. Simon,et al.  Evolution of polarization along a single‐mode fiber , 1977 .

[17]  P. Russell,et al.  Generation of permanent optically induced second-order nonlinearities in optical fibers by poling. , 1988, Optics letters.

[18]  T. Okoshi,et al.  Single-polarisation single-mode optical fibre with refractive-index pits on both sides of core , 1980 .

[19]  Lloyd L. Chase,et al.  Nonlinear refractive-index measurements of glasses using three-wave frequency mixing , 1987 .

[20]  D. Marcuse,et al.  Coupled-mode theory for anisotropic optical waveguides , 1975, The Bell System Technical Journal.

[21]  V. Handerek,et al.  Indium-coated D-shaped-fiber polarizer. , 1987, Optics letters.

[22]  David N. Payne,et al.  Noise in erbium-doped fibre amplifiers , 1988 .

[23]  David N. Payne,et al.  Fundamental limits to the transmission of linearly polarised light by birefringent optical fibres , 1984 .

[24]  Steven T. Davey,et al.  The fabrication and optical properties of Nd3+ in silica-based optical fibres , 1987 .

[25]  A. Barlow,et al.  Optical-fiber birefringence measurement using a photo-elastic modulator , 1985 .

[26]  R. Laming,et al.  Pump excited-state absorption in erbium-doped fibers. , 1988, Optics letters.

[27]  M. Nakazawa,et al.  Lasing characteristics of Er3+‐doped silica fibers from 1553 up to 1603 nm , 1988 .

[28]  G. A. Pavlath,et al.  Fiber Optic Gyro Development at Litton , 1987, Other Conferences.

[29]  R. Olshansky Noise figure for erbium-doped optical fibre amplifiers , 1988 .

[30]  David N. Payne,et al.  Distributed temperature sensor using Nd3+ -doped optical fibre , 1986 .

[31]  M. E. Fermann,et al.  Fabrication and characterization of low-loss optical fibers containing rare-earth ions , 1986 .

[32]  David N. Payne,et al.  Broadband metal/glass single-mode fibre polarisers , 1986 .

[33]  David N. Payne,et al.  Diode-laser-pumped Er3+/Yb3+-doped fiber laser operating at 1.57 µm , 1989 .

[34]  K. Kikuchi,et al.  Novel method for high resolution measurement of laser output spectrum , 1980 .

[35]  Steven T. Davey,et al.  The fabrication, assessment and optical properties of high-concentration Nd3+- and Er3+-doped silica-based fibres , 1988 .

[36]  David N. Payne,et al.  Losses in fiber laser cavities , 1988 .

[37]  D. Payne,et al.  Single-polarisation operation of highly birefringent bow-tie optical fibres , 1983 .

[38]  C. Gaeta,et al.  Theoretical analysis of optical fiber laser amplifiers and oscillators. , 1985, Applied optics.

[39]  D. Payne,et al.  Development of low- and high-birefringence optical fibers , 1982 .

[40]  J. C. Wright Up-conversion and excited state energy transfer in rare-earth doped materials , 1976 .

[41]  David N. Payne,et al.  Solution-doping technique for fabrication of rare-earth-doped optical fibres , 1987 .

[42]  A. Schawlow,et al.  Infrared and optical masers , 1958 .

[43]  D. C. Hanna,et al.  Measurements of fibre laser losses via relaxation oscillations , 1988 .

[44]  R. Laming,et al.  Noise characteristics of erbium-doped fiber amplifier pumped at 980 nm , 1990, IEEE Photonics Technology Letters.

[45]  D N Payne,et al.  Coiled-birefringent-fiber polarizers. , 1984, Optics letters.

[46]  D. Payne,et al.  Frequency-doubling by modal phase matching in poled optical fibres , 1988 .

[47]  Takaaki Mukai,et al.  S/N and Error Rate Performance in AlGaAs Semiconductor Laser Preamplifier and Linear Repeater Systems , 1982 .

[48]  R. Laming,et al.  Optimal design of optical fibers for electric current measurement. , 1989, Applied optics.

[49]  Anne C. Tropper,et al.  Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9 μm on the 4F32→4I92 transition , 1986 .

[50]  Nicholas F. Borrelli,et al.  Faraday Rotation in Glasses , 1964 .

[51]  R. Stolen,et al.  Self-organized phase-matched harmonic generation in optical fibers. , 1987, Optics letters.

[52]  David N. Payne,et al.  Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion , 1981 .

[53]  T Okoshi,et al.  Wavelength-sweeping technique for measuring the beat length of linearly birefringent optical fibers. , 1983, Optics letters.

[54]  Farhad Hakimi,et al.  ERBIUM FIBER LASER AMPLIFIER AT 1.55µm WITH PUMP AT 1.49µm AND Yb SENSITIZED Er OSCILLATOR , 1988 .

[55]  N. Chinone,et al.  Elasto-optic polarization measurement in optical fiber. , 1981, Optics letters.

[56]  P. Morkel,et al.  Losses in fibre laser cavities , 1988 .

[57]  S. Rashleigh Origins and control of polarization effects in single-mode fibers (A) , 1982 .