Present status of amorphous In–Ga–Zn–O thin-film transistors

Abstract The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In–Ga–Zn–O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32″ and 37″ displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models.

[1]  E. Hahn Some Electrical Properties of Zinc-Oxide Semiconductor. , 1951 .

[2]  Paul K. Weimer,et al.  The TFT A New Thin-Film Transistor , 1962, Proceedings of the IRE.

[3]  H. A. Klasens,et al.  A tin oxide field-effect transistor , 1964 .

[4]  J. E. Jacobs,et al.  ZnO field-effect transistor , 1968 .

[5]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[6]  Akira Aoki,et al.  Tin Oxide Thin Film Transistors , 1970 .

[7]  J. Tauc,et al.  Amorphous and liquid semiconductors , 1974 .

[8]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[9]  J. Janak,et al.  Proof that ? E /? n i =e in density-functional theory , 1978 .

[10]  C. D. Gelatt,et al.  Effective-mass theory in noncrystalline solids , 1979 .

[11]  N. Mott,et al.  Diffusion and logarithmic corrections to the conductivity of a disordered non-interacting 2D electron gas: power law localisation , 1981 .

[12]  P. Dobson Physics of Semiconductor Devices (2nd edn) , 1982 .

[13]  G. K. Reeves,et al.  Obtaining the specific contact resistance from transmission line model measurements , 1982, IEEE Electron Device Letters.

[14]  A. Hebard,et al.  Structural phase transitions of indium/indium oxide thin‐film composites , 1982 .

[15]  D. Dunstan,et al.  The Staebler-Wronski effect and the Meyer-Neldel rule in amorphous silicon , 1983 .

[16]  H. Fritzsche,et al.  Drift-mobility measurements in amorphous semiconductors using traveling-wave method , 1983 .

[17]  R. Metselaar,et al.  The Meyer-Neldel Rule in Semiconductors , 1984 .

[18]  T. V. Ramakrishnan,et al.  Disordered electronic systems , 1985 .

[19]  Wei,et al.  Role of metal d states in II-VI semiconductors. , 1988, Physical review. B, Condensed matter.

[20]  P. Couturier Japan , 1988, The Lancet.

[21]  J. Kanicki,et al.  Thermal annealing of light - induced metastable defects in hydrogenated amorphous silicon nitride , 1991 .

[22]  C. J. Adkins,et al.  Temperature dependence of the resistivity of amorphous indium oxide , 1991 .

[23]  H. Hosono,et al.  Novel Transparent and Electroconductive Amorphous Semiconductor: Amorphous AgSbO3 Film , 1995 .

[24]  H. Hosono,et al.  Amorphous transparent electroconductor 2CdO⋅GeO2: Conversion of amorphous insulating cadmium germanate by ion implantation , 1995 .

[25]  H. Hosono,et al.  New amorphous semiconductor: 2CdO⋅PbOx , 1996 .

[26]  Gerald Earle Jellison,et al.  Erratum: ‘‘Parameterization of the optical functions of amorphous materials in the interband region’’ [Appl. Phys. Lett. 69, 371 (1996)] , 1996 .

[27]  Hideo Hosono,et al.  Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples , 1996 .

[28]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[29]  H. Hosono,et al.  Novel n-type conducting amorphous chalcogenide CdS·In2Sx: an extension of working hypothesis for conducting amorphous oxides , 1998 .

[30]  K. Kawamura,et al.  Current injection emission from a transparent p-n junction composed of p-SrCu~2O~2/n-ZnO , 2000 .

[31]  Robert A. Street,et al.  Technology and Applications of Amorphous Silicon , 2000 .

[32]  Masataka Mizuno,et al.  Mechanism of electrical conductivity of transparent InGaZnO4 , 2000 .

[33]  H. Ohta,et al.  Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤ 4): a Zn4s conductor , 2001 .

[34]  Jerzy Kanicki,et al.  Influence of the Amorphous Silicon Thickness on Top Gate Thin-Film Transistor Electrical Performances , 2001 .

[35]  T. Shimoda,et al.  High-Quality SiO2/Si Interface Formation and Its Application to Fabrication of Low-Temperature-Processed Polycrystalline Si Thin-Film Transistor , 2002 .

[36]  K. Shimakawa,et al.  Advances in Amorphous Semiconductors , 2003 .

[37]  Reduction of grain-boundary potential barrier height in polycrystalline silicon with hot H2O vapor annealing probed using point-contact devices , 2003 .

[38]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[39]  Hideo Hosono,et al.  Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films , 2004 .

[40]  D. C. Reynolds,et al.  Remote hydrogen plasma doping of single crystal ZnO , 2004 .

[41]  H. Ohno,et al.  Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO , 2004 .

[42]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[43]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[44]  David C. Look,et al.  The Future Of ZnO Light Emitters , 2004 .

[45]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[46]  Po-Tsun Liu,et al.  High-performance hydrogenated amorphous-Si TFT for AMLCD and AMOLED applications , 2005 .

[47]  Kapil Sakariya,et al.  Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress , 2005 .

[48]  H. Ohta,et al.  Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4 , 2005 .

[49]  D. C. Reynolds,et al.  Role of Near-Surface States in Ohmic-Schottky Conversion of Au Contacts to ZnO , 2005 .

[50]  H. Ohta,et al.  Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors , 2006 .

[51]  Ichiro Hirosawa,et al.  A structural study of amorphous In2O3–ZnO films by grazing incidence X-ray scattering (GIXS) with synchrotron radiation , 2006 .

[52]  T. Kamiya,et al.  High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering , 2006 .

[53]  大友 明 High-mobility electronic transport in ZnO thin films , 2006 .

[54]  F. Ren,et al.  Contacts to ZnO , 2006 .

[55]  Wolfgang Kowalsky,et al.  The influence of visible light on transparent zinc tin oxide thin film transistors , 2007 .

[56]  Manabu Ito,et al.  Invited Paper Special Section on Electronic Displays " Front Drive " Display Structure for Color Electronic Paper Using Fully Transparent Amorphous Oxide Tft Array , 2022 .

[57]  Yu-Jen Chang,et al.  A General Route to Printable High‐Mobility Transparent Amorphous Oxide Semiconductors , 2007 .

[58]  B. Shinozaki,et al.  Weak Localization and Electron–Electron Interaction Effects in Indium Zinc Oxide Films , 2007 .

[59]  Yeon-Gon Mo,et al.  High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper , 2007 .

[60]  Cherie R. Kagan,et al.  Thin-Film Transistors , 2007 .

[61]  Hideo Hosono,et al.  Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations , 2007 .

[62]  Yeon-Gon Mo,et al.  Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment , 2007 .

[63]  Changjung Kim,et al.  Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules , 2007 .

[64]  J. Medvedeva,et al.  Averaging of the electron effective mass in multicomponent transparent conducting oxides , 2007, 0704.1499.

[65]  E. Jiang,et al.  Low temperature electrical transport properties of B-doped ZnO films , 2007 .

[66]  Changjung Kim,et al.  Effect of Ga∕In ratio on the optical and electrical properties of GaInZnO thin films grown on SiO2∕Si substrates , 2007 .

[67]  Tokiyoshi Matsuda,et al.  Novel top‐gate zinc oxide thin‐film transistors (ZnO TFTs) for AMLCDs , 2007 .

[68]  T. Kamiya,et al.  Interface electronic structures of zinc oxide and metals: First‐principle study , 2008 .

[69]  Ryan O'Hayre,et al.  General mobility and carrier concentration relationship in transparent amorphous indium zinc oxide films , 2008 .

[70]  Kee-Won Kwon,et al.  Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors , 2008 .

[71]  David Alan Drabold,et al.  Electrical conductivity and Meyer–Neldel rule: The role of localized states in hydrogenated amorphous silicon , 2008 .

[72]  Byung Du Ahn,et al.  Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors , 2008 .

[73]  Hideo Hosono,et al.  Specific contact resistances between amorphous oxide semiconductor In Ga Zn O and metallic electrodes , 2008 .

[74]  Hyuck-In Kwon,et al.  Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors , 2008 .

[75]  Hideo Hosono,et al.  Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states , 2008 .

[76]  Hideo Hosono,et al.  Electronic structure of oxygen deficient amorphous oxide semiconductor a‐InGaZnO4–x : Optical analyses and first‐principle calculations , 2008 .

[77]  Eunha Lee,et al.  Short Channel Characteristics of Gallium–Indium–Zinc–Oxide Thin Film Transistors for Three-Dimensional Stacking Memory , 2008, IEEE Electron Device Letters.

[78]  Hyun-Joong Chung,et al.  Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water , 2008 .

[79]  Masashi Kawasaki,et al.  ZnO-Based Semiconductors as Building Blocks for Active Devices , 2008 .

[80]  Yeon-Gon Mo,et al.  Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors , 2008 .

[81]  C. J. Kim,et al.  Fully transparent nonvolatile memory employing amorphous oxides as charge trap and transistor’s channel layer , 2008 .

[82]  Dong Myong Kim,et al.  Modeling of amorphous InGaZnO thin-film transistors based on the density of states extracted from the optical response of capacitance-voltage characteristics , 2008 .

[83]  Cheol Seong Hwang,et al.  Origin of Subthreshold Swing Improvement in Amorphous Indium Gallium Zinc Oxide Transistors , 2008 .

[84]  Hideo Hosono,et al.  Photofield‐effect in amorphous In‐Ga‐Zn‐O (a‐IGZO) thin‐film transistors , 2008 .

[85]  Hideo Hosono,et al.  Trap densities in amorphous-InGaZnO4 thin-film transistors , 2008 .

[86]  Dong Myong Kim,et al.  Extraction of Density of States in Amorphous GaInZnO Thin-Film Transistors by Combining an Optical Charge Pumping and Capacitance–Voltage Characteristics , 2008, IEEE Electron Device Letters.

[87]  Hideo Hosono,et al.  Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing , 2008 .

[88]  K. Yano,et al.  Electron weak localization, and electron phonon interaction in amorphous zinc-doped indium oxide films , 2008 .

[89]  V. Rodriguez-Mora,et al.  Specific heat of ethanol at low temperatures , 2008 .

[90]  Hideo Hosono,et al.  Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy , 2008 .

[91]  B. Ryu,et al.  Structural and electronic properties of crystalline InGaO3(ZnO)m , 2008 .

[92]  John F. Muth,et al.  Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors , 2008 .

[93]  Jang-Yeon Kwon,et al.  The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors , 2009 .

[94]  Jin-seong Park,et al.  Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors , 2009 .

[95]  Jae Kyeong Jeong,et al.  Local structure and conduction mechanism in amorphous In–Ga–Zn–O films , 2009 .

[96]  T. Kamiya,et al.  Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping* , 2009, Journal of Display Technology.

[97]  Kenji Matsumoto,et al.  Formation of compensated defects in zinc magnesium oxides assignable from diffusion coefficients and hard x-ray photoemission , 2009 .

[98]  Hideo Hosono,et al.  First-principles study of native point defects in crystalline indium gallium zinc oxide , 2009 .

[99]  K. Takahashi,et al.  Materials, Devices, and Circuits of Transparent Amorphous-Oxide Semiconductor , 2009, Journal of Display Technology.

[100]  Experimental and Theoretical Analysis of Degradation in Ga2O3–In2O3–ZnO Thin-Film Transistors , 2009 .

[101]  M. Nakata,et al.  Temperature-Dependent Transfer Characteristics of Amorphous InGaZnO4 Thin-Film Transistors , 2009 .

[102]  K. Abe,et al.  a‐InGaZnO thin‐film transistors for AMOLEDs: Electrical stability and pixel‐circuit simulation , 2009 .

[103]  T. W. Noh,et al.  Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures , 2009 .

[104]  M. Nakata,et al.  Comparison of Ultraviolet Photo-Field Effects between Hydrogenated Amorphous Silicon and Amorphous InGaZnO4 Thin-Film Transistors , 2009 .

[105]  Hideo Hosono,et al.  Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor , 2009 .

[106]  Doo-Hee Cho,et al.  Impact of device configuration on the temperature instability of Al–Zn–Sn–O thin film transistors , 2009 .

[107]  M. Nakata,et al.  Application of the Meyer–Neldel Rule to the Subthreshold Characteristics of Amorphous InGaZnO4 Thin-Film Transistors , 2009 .

[108]  T. Kamiya,et al.  Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model , 2009, Journal of Display Technology.

[109]  J. Kanicki,et al.  Density of States of a-InGaZnO From Temperature-Dependent Field-Effect Studies , 2009, IEEE Transactions on Electron Devices.

[110]  Dong Myong Kim,et al.  Density of States-Based DC $I$– $V$ Model of Amorphous Gallium–Indium–Zinc-Oxide Thin-Film Transistors , 2009, IEEE Electron Device Letters.

[111]  Jerzy Kanicki,et al.  Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors , 2009 .

[112]  M. Nakata,et al.  Study on Current Crowding in the Output Characteristics of Amorphous InGaZnO4 Thin-Film Transistors Using Dual-Gate Structures with Various Active-Layer Thicknesses , 2009 .

[113]  Jong Hyun Shim,et al.  Solution-processed InGaZnO-based thin film transistors for printed electronics applications , 2009 .

[114]  Hideo Hosono,et al.  Origins of threshold voltage shifts in room-temperature deposited and annealed a-In–Ga–Zn–O thin-film transistors , 2009 .

[115]  Kimoon Lee,et al.  Transparent and Photo‐stable ZnO Thin‐film Transistors to Drive an Active Matrix Organic‐Light‐ Emitting‐Diode Display Panel , 2009 .

[116]  Chih-Wei Chien,et al.  Self-Aligned Top-Gate Coplanar In-Ga-Zn-O Thin-Film Transistors , 2009, Journal of Display Technology.

[117]  A. Walsh,et al.  Interplay between Order and Disorder in the High Performance of Amorphous Transparent Conducting Oxides , 2009 .

[118]  J. Myoung,et al.  Reliable Bottom Gate Amorphous Indium-Gallium-Zinc Oxide Thin-Film Transistors with TiOx Passivation Layer , 2009 .

[119]  T. Kamiya,et al.  Electronic structure of the amorphous oxide semiconductor a‐InGaZnO4–x : Tauc–Lorentz optical model and origins of subgap states , 2009 .

[120]  M.C. Kim,et al.  Nonvolatile-Memory Characteristics of $\hbox{AlO}^{-}$ -Implanted $\hbox{Al}_{2}\hbox{O}_{3}$ , 2009, IEEE Electron Device Letters.

[121]  Liang Fang,et al.  Transparent flexible resistive random access memory fabricated at room temperature , 2009 .

[122]  F. Utsuno,et al.  Electronic structural analysis of transparent In2O3–ZnO films by hard X-ray photoelectron spectroscopy , 2010 .

[123]  T. Kamiya,et al.  Subgap states, doping and defect formation energies in amorphous oxide semiconductor a‐InGaZnO4 studied by density functional theory , 2010 .

[124]  T. Kamiya,et al.  Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors , 2010 .

[125]  Hideo Hosono,et al.  Material characteristics and applications of transparent amorphous oxide semiconductors , 2010 .

[126]  Dong Myong Kim,et al.  Extraction of Subgap Density of States in Amorphous InGaZnO Thin-Film Transistors by Using Multifrequency Capacitance–Voltage Characteristics , 2010, IEEE Electron Device Letters.

[127]  Sheng-Yao Huang,et al.  Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory , 2010 .

[128]  Yasushi Sato,et al.  DC sputter deposition of amorphous indium–gallium–zinc–oxide (a-IGZO) films with H2O introduction , 2010 .

[129]  T. Kamiya,et al.  Intrinsic carrier mobility in amorphous In–Ga–Zn–O thin-film transistors determined by combined field-effect technique , 2010 .

[130]  Hideo Hosono,et al.  Comprehensive studies on the stabilities of a-In-Ga-Zn-O based thin film transistor by constant current stress , 2010 .

[131]  J. Medvedeva,et al.  Tuning the properties of complex transparent conducting oxides: Role of crystal symmetry, chemical composition, and carrier generation , 2010, 1002.4827.

[132]  Dong Hee Lee,et al.  Large Photoresponse in Amorphous In–Ga–Zn–O and Origin of Reversible and Slow Decay , 2010 .

[133]  C. J. Kim,et al.  Self-Consistent Technique for Extracting Density of States in Amorphous InGaZnO Thin Film Transistors , 2010 .

[134]  M. Kitamura,et al.  Enhancement of negative magnetoresistance due to weak localization in In2O3 thin films on Si substrate , 2010 .