UcoSLAM: Simultaneous Localization and Mapping by Fusion of KeyPoints and Squared Planar Markers

This paper proposes a novel approach for Simultaneous Localization and Mapping by fusing natural and artificial landmarks. Most of the SLAM approaches use natural landmarks (such as keypoints). However, they are unstable over time, repetitive in many cases or insufficient for a robust tracking (e.g. in indoor buildings). On the other hand, other approaches have employed artificial landmarks (such as squared fiducial markers) placed in the environment to help tracking and relocalization. We propose a method that integrates both approaches in order to achieve long-term robust tracking in many scenarios. Our method has been compared to the start-of-the-art methods ORB-SLAM2 and LDSO in the public dataset Kitti, Euroc-MAV, TUM and SPM, obtaining better precision, robustness and speed. Our tests also show that the combination of markers and keypoints achieves better accuracy than each one of them independently.

[1]  Klaus Dorfmüller,et al.  Real-Time Hand and Head Tracking for Virtual Environments Using Infrared Beacons , 1998, CAPTECH.

[2]  Young Sam Lee,et al.  Real-time single camera SLAM using fiducial markers , 2009, 2009 ICCAS-SICE.

[3]  Rafael Muñoz-Salinas,et al.  Mapping and Localization from Planar Markers , 2016, Pattern Recognit..

[4]  Axel Pinz,et al.  Robust Pose Estimation from a Planar Target , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Paul H. J. Kelly,et al.  SLAM++: Simultaneous Localisation and Mapping at the Level of Objects , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Dieter Schmalstieg,et al.  Automatic Reconstruction of Wide-Area Fiducial Marker Models , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[7]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[8]  Rafael Muñoz-Salinas,et al.  Speeded up detection of squared fiducial markers , 2018, Image Vis. Comput..

[9]  Edwin Olson,et al.  AprilTag 2: Efficient and robust fiducial detection , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[10]  V. Knyaz,et al.  THE DEVELOPMENT OF NEW CODED TARGETS FOR AUTOMATED POINT IDENTIFICATION AND NON CONTACT 3D SURFACE MEASUREMENTS , 1998 .

[11]  Shichao Yang,et al.  Pop-up SLAM: Semantic monocular plane SLAM for low-texture environments , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[12]  Marc Hanheide,et al.  Artificial Intelligence for Long-Term Robot Autonomy: A Survey , 2018, IEEE Robotics and Automation Letters.

[13]  T. Yamada,et al.  A study on SLAM for indoor blimp with visual markers , 2009, 2009 ICCAS-SICE.

[14]  Jun Rekimoto,et al.  CyberCode: designing augmented reality environments with visual tags , 2000, DARE '00.

[15]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Adrien Bartoli,et al.  Infinitesimal Plane-Based Pose Estimation , 2014, International Journal of Computer Vision.

[17]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Francisco José Madrid-Cuevas,et al.  Generation of fiducial marker dictionaries using Mixed Integer Linear Programming , 2016, Pattern Recognit..

[19]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[20]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Libor Preucil,et al.  A Practical Multirobot Localization System , 2014, J. Intell. Robotic Syst..

[22]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[23]  Hauke Strasdat,et al.  Scale Drift-Aware Large Scale Monocular SLAM , 2010, Robotics: Science and Systems.

[24]  Mark Fiala,et al.  Designing Highly Reliable Fiducial Markers , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Francisco José Madrid-Cuevas,et al.  Automatic generation and detection of highly reliable fiducial markers under occlusion , 2014, Pattern Recognit..

[26]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[27]  Jonas Buchli,et al.  An Open Source, Fiducial Based, Visual-Inertial State Estimation System , 2015, ArXiv.

[28]  Masatoshi Okutomi,et al.  Visual Place Recognition with Repetitive Structures , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Michael Rohs,et al.  USING CAMERA-EQUIPPED MOBILE PHONES FOR INTERACTING WITH REAL-WORLD OBJECTS , 2004 .

[31]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[32]  Xiang Chen,et al.  A Self-localization System with Global Error Reduction and Online Map-Building Capabilities , 2012, ICIRA.

[33]  Daniel Cremers,et al.  LDSO: Direct Sparse Odometry with Loop Closure , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[35]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[36]  Rafael Muñoz-Salinas,et al.  SPM-SLAM: Simultaneous localization and mapping with squared planar markers , 2019, Pattern Recognit..

[37]  Dorian Gálvez-López,et al.  Bags of Binary Words for Fast Place Recognition in Image Sequences , 2012, IEEE Transactions on Robotics.

[38]  Larry S. Davis,et al.  Iterative Pose Estimation Using Coplanar Feature Points , 1996, Comput. Vis. Image Underst..

[39]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[40]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[41]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[42]  Dieter Schmalstieg,et al.  The Studierstube Augmented Reality Project , 2002, Presence: Teleoperators & Virtual Environments.

[43]  Eric Foxlin,et al.  Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker , 2002, Proceedings. International Symposium on Mixed and Augmented Reality.

[44]  Hirokazu Kato,et al.  Marker tracking and HMD calibration for a video-based augmented reality conferencing system , 1999, Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR'99).

[45]  Mark Fiala,et al.  Comparing ARTag and ARToolkit Plus fiducial marker systems , 2005, IEEE International Workshop on Haptic Audio Visual Environments and their Applications.

[46]  Marc Hanheide,et al.  An efficient visual fiducial localisation system , 2017, SIAP.

[47]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[49]  Axel Pinz,et al.  A new optical tracking system for virtual and augmented reality applications , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).