The Role of Sigma Factors in Regulating Bacterial Stress Responses and Pathogenesis

[1]  Jeffrey W. Roberts,et al.  Antitermination by bacteriophage lambda Q protein. , 1998, Cold Spring Harbor symposia on quantitative biology.

[2]  R. Husson,et al.  A mycobacterial extracytoplasmic function sigma factor involved in survival following stress , 1997, Journal of bacteriology.

[3]  C. Gross,et al.  Regulation of the Escherichia coliσE‐dependent envelope stress response , 2004, Molecular microbiology.

[4]  K. Makino,et al.  Role of the sigma 70 subunit of Escherichia coli RNA polymerase in transcription activation. , 1994, Journal of molecular biology.

[5]  K. Hughes,et al.  Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome , 2002, Molecular microbiology.

[6]  G. Dougan,et al.  Construction and Characterization of a Yersinia , 1996 .

[7]  P. Model,et al.  Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms. , 1991, Genes & development.

[8]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[9]  A. Benson,et al.  Characterization of a regulatory network that controls sigma B expression in Bacillus subtilis , 1992, Journal of bacteriology.

[10]  R. Burgess,et al.  Characterization of the Escherichia coli transcription factor sigma 70: localization of a region involved in the interaction with core RNA polymerase. , 1989, Biochemistry.

[11]  P. Jungblut,et al.  Proteome analysis of bacterial pathogens. , 2001, Microbes and infection.

[12]  K. Ohnishi,et al.  A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti‐sigma factor inhibits the activity of the flagellum‐specific Sigma factor, σF , 1992, Molecular microbiology.

[13]  D. Pierson,et al.  Microbial Responses to Microgravity and Other Low-Shear Environments , 2004, Microbiology and Molecular Biology Reviews.

[14]  K. Boor,et al.  RsbT and RsbV Contribute to σB-Dependent Survival under Environmental, Energy, and Intracellular Stress Conditions in Listeria monocytogenes , 2004, Applied and Environmental Microbiology.

[15]  C. Nadon,et al.  Sigma B Contributes to PrfA-Mediated Virulence in Listeria monocytogenes , 2002, Infection and Immunity.

[16]  V. Shingler Signal sensing by σ54‐dependent regulators: derepression as a control mechanism , 1996, Molecular microbiology.

[17]  Mark S. Thomas,et al.  Role of the Stationary Growth Phase Sigma Factor RpoS of Burkholderia pseudomallei in Response to Physiological Stress Conditions , 2003, Journal of bacteriology.

[18]  F. Quinn,et al.  Differential expression of sigE by Mycobacterium tuberculosis during intracellular growth. , 2001, Microbial pathogenesis.

[19]  V. L. Miller,et al.  Role of RpoS in survival of Yersinia enterocolitica to a variety of environmental stresses , 1995, Journal of bacteriology.

[20]  Kevin F. Jones,et al.  Conserved DegP Protease in Gram-Positive Bacteria Is Essential for Thermal and Oxidative Tolerance and Full Virulence inStreptococcus pyogenes , 2001, Infection and Immunity.

[21]  D. Szeto,et al.  Function of a bacterial activator protein that binds to transcriptional enhancers. , 1989, Science.

[22]  S. Engelmann,et al.  General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon , 1996, Journal of bacteriology.

[23]  M. Susskind,et al.  A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. , 1989, Journal of molecular biology.

[24]  M. Schuster,et al.  The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing , 2004, Molecular microbiology.

[25]  H. Lai,et al.  Co‐ordinate expression of virulence genes during swarm‐cell differentiation and population migration of Proteus mirabilis , 1992, Molecular microbiology.

[26]  H. Mori,et al.  Regulation of the heat-shock response in bacteria. , 1993, Annual review of microbiology.

[27]  J. Mekalanos,et al.  Distinct roles of an alternative sigma factor during both free‐swimming and colonizing phases of the Vibrio cholerae pathogenic cycle , 1998, Molecular microbiology.

[28]  R. Lease,et al.  A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[30]  G. Jovanovic,et al.  Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon , 1996, Journal of bacteriology.

[31]  K. Tanaka,et al.  Structure of the 5′ upstream region and the regulation of the rpoS gene of Escherichia coli , 1994, Molecular and General Genetics MGG.

[32]  J. Mekalanos,et al.  Identification of Multiple ς54-Dependent Transcriptional Activators inVibrio cholerae , 1998 .

[33]  S. Lory,et al.  Pseudomonas aeruginosa infection of respiratory epithelium in a cystic fibrosis xenograft model. , 2001, The Journal of infectious diseases.

[34]  K. Boor,et al.  Listeria monocytogenes σB Contributes to Invasion of Human Intestinal Epithelial Cells , 2004, Infection and Immunity.

[35]  F. Heffron,et al.  Induction of Salmonella stress proteins upon infection of macrophages. , 1990, Science.

[36]  K. Hughes,et al.  The type III secretion determinants of the flagellar anti‐transcription factor, FlgM, extend from the amino‐terminus into the anti‐σ28 domain , 1998, Molecular microbiology.

[37]  C. Gross,et al.  Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA. , 2003, Molecular cell.

[38]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[39]  J. Foster,et al.  How Salmonella survive against the odds. , 1995, Annual review of microbiology.

[40]  N. Majdalani,et al.  Regulation of RpoS by a novel small RNA: the characterization of RprA. , 2001, Molecular microbiology.

[41]  M. Inouye,et al.  A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Cheung,et al.  Hyperproduction of Alpha-Hemolysin in asigB Mutant Is Associated with Elevated SarA Expression inStaphylococcus aureus , 1999, Infection and Immunity.

[43]  M. Sebert,et al.  Microarray-Based Identification of htrA, a Streptococcus pneumoniae Gene That Is Regulated by the CiaRH Two-Component System and Contributes to Nasopharyngeal Colonization , 2002, Infection and Immunity.

[44]  J. Foster,et al.  Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium , 1999, Molecular microbiology.

[45]  A. Abdelal,et al.  Role of ArgR in Activation of the ast Operon, Encoding Enzymes of the Arginine Succinyltransferase Pathway in Salmonella typhimurium , 1999, Journal of bacteriology.

[46]  R. Losick,et al.  Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis. , 1996, Journal of molecular biology.

[47]  E. Allen-Vercoe,et al.  Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. , 1999, Microbiology.

[48]  J. Helmann,et al.  The σ70family of sigma factors , 2003, Genome Biology.

[49]  J. Foster,et al.  Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium , 1996, Journal of bacteriology.

[50]  P. Legrain,et al.  Identification of the Helicobacter pylori anti‐σ28 factor , 2001, Molecular microbiology.

[51]  F. Neidhardt,et al.  Nucleotide sequence of the heat shock regulatory gene of E. coli suggests its protein product may be a transcription factor , 1984, Cell.

[52]  H. Yanagi,et al.  Heat-Induced Synthesis of ς32 inEscherichia coli: Structural and Functional Dissection ofrpoH mRNA Secondary Structure , 1999, Journal of bacteriology.

[53]  C. Waldburger,et al.  Changes in conserved region 2 of Escherichia coli σ70 affecting promoter recognition , 1990 .

[54]  M. Cusick,et al.  Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Collado-Vides,et al.  A linguistic representation of the regulation of transcription initiation. II. Distinctive features of sigma 70 promoters and their regulatory binding sites. , 1993, Bio Systems.

[56]  R. Hengge-aronis,et al.  The Escherichia coli histone‐like protein HU regulates rpoS translation , 2001, Molecular microbiology.

[57]  Carol A. Gross,et al.  The heat shock response of E. coli is regulated by changes in the concentration of σ32 , 1987, Nature.

[58]  R. Sleator,et al.  Contribution of Three Bile-Associated Loci, bsh, pva, and btlB, to Gastrointestinal Persistence and Bile Tolerance of Listeria monocytogenes , 2005, Infection and Immunity.

[59]  M. Schell,et al.  An RpoS (σS) homologue regulates acylhomoserine lactone‐dependent autoinduction in Ralstonia solanacearum , 1998, Molecular microbiology.

[60]  A. Travers,et al.  A mutation affecting the σ subunit of RNA polymerase changes transcriptional specificity , 1978, Nature.

[61]  M. Wösten Eubacterial sigma-factors. , 1998, FEMS microbiology reviews.

[62]  A. Grossman,et al.  The htpR gene product of E. coli is a sigma factor for heat-shock promoters , 1984, Cell.

[63]  S. Lory,et al.  The filA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis , 1992, Molecular microbiology.

[64]  K. Hughes,et al.  Coupling of Flagellar Gene Expression to Flagellar Assembly in Salmonella enterica Serovar Typhimurium andEscherichia coli , 2000, Microbiology and Molecular Biology Reviews.

[65]  F. Gamo,et al.  Global Transcriptional Response of Bacillus subtilis to Heat Shock , 2001, Journal of bacteriology.

[66]  R. Welch,et al.  degS Is Necessary for Virulence and Is among Extraintestinal Escherichia coli Genes Induced in Murine Peritonitis , 2003, Infection and Immunity.

[67]  K. Mathee,et al.  The anti-sigma factors. , 1998, Annual review of microbiology.

[68]  C. Gross,et al.  Amino-terminal amino acids modulate sigma-factor DNA-binding activity. , 1993, Genes & development.

[69]  K. Heuner,et al.  Cloning and genetic characterization of the flagellum subunit gene (flaA) of Legionella pneumophila serogroup 1 , 1995, Infection and immunity.

[70]  J. Gordon,et al.  Expression of thin aggregative fimbriae promotes interaction of Salmonella typhimurium SR-11 with mouse small intestinal epithelial cells , 1997, Infection and immunity.

[71]  B. Magasanik,et al.  Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[72]  A. Manna,et al.  SarA level is a determinant of agr activation in Staphylococcus aureus , 1998, Molecular microbiology.

[73]  V. Scarlato,et al.  Motility of Helicobacter pylori Is Coordinately Regulated by the Transcriptional Activator FlgR, an NtrC Homolog , 1999, Journal of bacteriology.

[74]  M. Bischoff,et al.  The σB Regulon Influences Internalization of Staphylococcus aureus by Osteoblasts , 2003, Infection and Immunity.

[75]  M. Popoff,et al.  The putative sigma factor KatF (RpoS) is required for the transcription of the Salmonella typhimurium virulence gene spvB in Escherichia coli. , 1992, FEMS microbiology letters.

[76]  T. Donohue,et al.  The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. , 1993, Genes & development.

[77]  R. Dixon The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in γ-Proteobacteria , 1998, Archives of Microbiology.

[78]  R. Hengge-aronis,et al.  Regulation of RssB‐dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulator‐controlled process , 1998, Molecular microbiology.

[79]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[80]  P. Berche,et al.  ClpC ATPase Is Required for Cell Adhesion and Invasion of Listeria monocytogenes , 2000, Infection and Immunity.

[81]  R. Ramphal,et al.  FleQ, the Major Flagellar Gene Regulator in Pseudomonas aeruginosa, Binds to Enhancer Sites Located Either Upstream or Atypically Downstream of the RpoN Binding Site , 2002, Journal of bacteriology.

[82]  R. Hengge-aronis,et al.  Identification of a central regulator of stationary‐phase gene expression in Escherichia coli , 1991, Molecular microbiology.

[83]  S. Foster,et al.  The Staphylococcus aureus Alternative Sigma Factor ςB Controls the Environmental Stress Response but Not Starvation Survival or Pathogenicity in a Mouse Abscess Model , 1998 .

[84]  D. Hassett,et al.  Effect of rpoS Mutation on the Stress Response and Expression of Virulence Factors in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[85]  A. Ishihama,et al.  RpoS (Sigma-S) Controls Expression of rsmA, a Global Regulator of Secondary Metabolites, Harpin, and Extracellular Proteins in Erwinia carotovora , 1998, Journal of bacteriology.

[86]  S. Libby,et al.  The alternative sigma factor σE controls antioxidant defences required for Salmonella virulence and stationary‐phase survival , 2002, Molecular microbiology.

[87]  P. Berche,et al.  The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes , 2000, Molecular microbiology.

[88]  E V Koonin,et al.  AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. , 1999, Genome research.

[89]  C. Gross,et al.  The σE‐mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE , 1997, Molecular microbiology.

[90]  G. Schoolnik Microarray analysis of bacterial pathogenicity. , 2002, Advances in microbial physiology.

[91]  J. Galán,et al.  Type III Secretion Machines: Bacterial Devices for Protein Delivery into Host Cells , 1999 .

[92]  M. Buck,et al.  The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. , 2000, FEMS microbiology letters.

[93]  Richard I. Morimoto,et al.  1 Progress and Perspectives on the Biology of Heat Shock Proteins and Molecular Chaperones , 1994 .

[94]  L. Reitzer,et al.  Metabolic Context and Possible Physiological Themes of ς54-Dependent Genes in Escherichia coli , 2001, Microbiology and Molecular Biology Reviews.

[95]  M. Hecker,et al.  Expression of the ςB-Dependent General Stress Regulon Confers Multiple Stress Resistance inBacillus subtilis , 1999 .

[96]  P. Gulig,et al.  The Salmonella typhimurium virulence plasmid increases the growth rate of salmonellae in mice , 1993, Infection and immunity.

[97]  T. Schweder,et al.  Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease , 1996, Journal of bacteriology.

[98]  David J. Studholme,et al.  The Bacterial Enhancer-Dependent ς54(ςN) Transcription Factor , 2000, Journal of bacteriology.

[99]  H. Rohde,et al.  RsbU-Dependent Regulation of Staphylococcus epidermidis Biofilm Formation Is Mediated via the Alternative Sigma Factor σB by Repression of the Negative Regulator Gene icaR , 2004, Infection and Immunity.

[100]  A. Benson,et al.  Regulation of sigma B levels and activity in Bacillus subtilis , 1993, Journal of bacteriology.

[101]  D. Grenier,et al.  Oral microbial heat-shock proteins and their potential contributions to infections. , 2003, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[102]  V. de Lorenzo,et al.  Active recruitment of σ54‐RNA polymerase to the Pu promoter of Pseudomonas putida: role of IHF and αCTD , 1998, The EMBO journal.

[103]  M. Chamberlin,et al.  Secondary sigma factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Søren Molin,et al.  Global impact of mature biofilm lifestyle on Escherichia coli K‐12 gene expression , 2003, Molecular microbiology.

[105]  I. Kullik,et al.  Deletion of the Alternative Sigma Factor ςB in Staphylococcus aureus Reveals Its Function as a Global Regulator of Virulence Genes , 1998, Journal of bacteriology.

[106]  I. Charles,et al.  The role of a stress‐response protein in Salmonella typhimurium virulence , 1991, Molecular microbiology.

[107]  R. Hengge-aronis,et al.  The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. , 1996, Genes & development.

[108]  V. Venturi Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different? , 2003, Molecular microbiology.

[109]  Sarah E. Ades,et al.  The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. , 1999, Genes & development.

[110]  C. Price,et al.  Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals , 1995, Journal of bacteriology.

[111]  F. Neidhardt,et al.  Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. , 1987, Genes & development.

[112]  Beatriz de Astorza,et al.  Role of the htrA Gene in Klebsiella pneumoniae Virulence , 2002, Infection and Immunity.

[113]  M. Pirhonen,et al.  The response regulator expM is essential for the virulence of Erwinia carotovora subsp. carotovora and acts negatively on the sigma factor RpoS (sigma s). , 1999, Molecular plant-microbe interactions : MPMI.

[114]  W. Bishai,et al.  Sigma factors of Mycobacterium tuberculosis. , 1997, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[115]  R. Curtiss,et al.  Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection , 1997, Infection and immunity.

[116]  C. Price,et al.  Stress-induced activation of the sigma B transcription factor of Bacillus subtilis , 1993, Journal of bacteriology.

[117]  N. High,et al.  The Extracytoplasmic Sigma Factor, ςE, Is Required for Intracellular Survival of Nontypeable Haemophilus influenzae in J774 Macrophages , 2002, Infection and Immunity.

[118]  C. Gross,et al.  DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. , 2002, Genes & development.

[119]  K. Ito,et al.  Heat shock regulatory gene (htpR) of Escherichia coli is required for growth at high temperature but is dispensable at low temperature. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Thomas Egli,et al.  Molecular components of physiological stress responses in Escherichia coli. , 2004, Advances in biochemical engineering/biotechnology.

[121]  K. Hughes,et al.  Completion of the hook–basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription , 2000, Molecular microbiology.

[122]  C. O’Byrne,et al.  Role of Listeria monocytogenes σB in Survival of Lethal Acidic Conditions and in the Acquired Acid Tolerance Response , 2003, Applied and Environmental Microbiology.

[123]  M. Hecker,et al.  General stress response of Bacillus subtilis and other bacteria. , 2001, Advances in microbial physiology.

[124]  V. Deretic,et al.  Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism , 2000, Molecular microbiology.

[125]  M. Valvano,et al.  RpoS and RpoN are involved in the growth-dependent regulation of rfaH transcription and O antigen expression in Salmonella enterica serovar Typhi. , 2004, Microbial pathogenesis.

[126]  K. Hughes,et al.  Regulation of flagellar assembly. , 2002, Current opinion in microbiology.

[127]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[128]  T. Elliott,et al.  Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene , 1996, Journal of bacteriology.

[129]  H. Mobley,et al.  Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection. , 1999, Microbiology.

[130]  R. Hengge-aronis,et al.  The response regulator RssB, a recognition factor for σS proteolysis in Escherichia coli, can act like an anti‐σS factor , 2000 .

[131]  M. Kagnoff,et al.  Expression of Salmonella typhimurium rpoS and rpoS-dependent genes in the intracellular environment of eukaryotic cells , 1996, Infection and immunity.

[132]  F. Neidhardt,et al.  Analysis of proteins synthesized by Salmonella typhimurium during growth within a host macrophage , 1993, Journal of bacteriology.

[133]  S. Choi,et al.  Isolation and Characterization of rpoS from a Pathogenic Bacterium, Vibrio vulnificus: Role of σS in Survival of Exponential-Phase Cells under Oxidative Stress , 2004, Journal of bacteriology.

[134]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[135]  E. Mahenthiralingam,et al.  Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis , 1994, Infection and immunity.

[136]  M. Breitenbach,et al.  A DNA vaccine encoding the outer surface protein C from Borrelia burgdorferi is able to induce protective immune responses. , 2003, Microbes and infection.

[137]  R. Losick,et al.  Mutation changing the specificity of an RNA polymerase sigma factor. , 1989, Journal of molecular biology.

[138]  B. Bukau,et al.  The heat shock response of Escherichia coli. , 2000, International journal of food microbiology.

[139]  R. Burgess,et al.  How sigma docks to RNA polymerase and what sigma does. , 2001, Current opinion in microbiology.

[140]  R. Hengge-aronis,et al.  Stationary phase gene regulation: what makes an Escherichia coli promoter sigmaS-selective? , 2002, Current opinion in microbiology.

[141]  R. Hengge-aronis,et al.  Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli , 1997, Journal of bacteriology.

[142]  R. Hengge-aronis,et al.  The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. , 1994, Genes & development.

[143]  J. Galán,et al.  The Flagellar Sigma Factor FliA (ς28) Regulates the Expression of Salmonella Genes Associated with the Centisome 63 Type III Secretion System , 2000, Infection and Immunity.

[144]  B. Poolman,et al.  How do membrane proteins sense water stress? , 2002, Molecular microbiology.

[145]  P Youngman,et al.  Genome‐wide analysis of the general stress response in Bacillus subtilis , 2001, Molecular microbiology.

[146]  J. Erickson,et al.  Transcriptional regulation of the heat shock regulatory gene rpoH in Escherichia coli: involvement of a novel catabolite-sensitive promoter , 1990, Journal of bacteriology.

[147]  J. Slonczewski,et al.  Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH , 1994, Journal of bacteriology.

[148]  K. Heuner,et al.  Influence of the Alternative σ28 Factor on Virulence and Flagellum Expression of Legionella pneumophila , 2002, Infection and Immunity.

[149]  S. M. Thomas,et al.  Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase , 1990, Journal of bacteriology.

[150]  W. Bishai,et al.  Deletionof Mycobacterium tuberculosis Sigma Factor E Results inDelayed Time to Death with Bacterial Persistence in the Lungsof Aerosol-InfectedMice , 2003, Infection and Immunity.

[151]  E. Nudler,et al.  RNA polymerase holoenzyme: structure, function and biological implications. , 2003, Current opinion in microbiology.

[152]  V. L. Miller,et al.  The psp locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced , 2001, Molecular microbiology.

[153]  J. Foster,et al.  Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. , 2001, International journal of medical microbiology : IJMM.

[154]  W. Haldenwang,et al.  Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV) , 1994, Journal of bacteriology.

[155]  R. Rosen,et al.  Proteome analysis in the study of the bacterial heat-shock response. , 2002, Mass spectrometry reviews.

[156]  B. P. Guo,et al.  Decorin‐binding adhesins from Borrelia burgdorferi , 1998, Molecular microbiology.

[157]  R. Hengge-aronis,et al.  Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli , 1996, Journal of bacteriology.

[158]  M. Hecker,et al.  Heat‐shock and general stress response in Bacillus subtilis , 1996, Molecular microbiology.

[159]  S. Lory,et al.  The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene , 1990, Journal of bacteriology.

[160]  S. Engelmann,et al.  Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE. , 1996, FEMS microbiology letters.

[161]  A. Wedel,et al.  The bacterial enhancer-binding protein NTRC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation. , 1995, Genes & development.

[162]  V. Robbe-Saule,et al.  Virulence and vaccine potential of Salmonella typhlmurium mutants deficient in the expression of the RpoS (σs) regulon , 1996, Molecular microbiology.

[163]  S. Kustu,et al.  The bacterial enhancer-binding protein NtrC as a molecular machine. , 1998, Cold Spring Harbor symposia on quantitative biology.

[164]  Jason C. Young,et al.  A Stress Sensor for the Bacterial Periplasm , 2003, Cell.

[165]  X. Liu,et al.  The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons , 1994, Journal of bacteriology.

[166]  T. Hoover,et al.  Transcriptional regulation at a distance in bacteria. , 2001, Current opinion in microbiology.

[167]  J. Dworkin,et al.  The PspA Protein of Escherichia coli Is a Negative Regulator of ς54-Dependent Transcription , 2000, Journal of bacteriology.

[168]  M. Roberts,et al.  The Alternative Sigma Factor, ςE, Is Critically Important for the Virulence of Salmonella typhimurium , 1999, Infection and Immunity.

[169]  J. Foster,et al.  An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2 , 1997, Infection and immunity.

[170]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[171]  V. Robbe-Saule,et al.  The live oral typhoid vaccine Ty21a is a rpoS mutant and is susceptible to various environmental stresses. , 1995, FEMS microbiology letters.

[172]  S. Darst,et al.  Crystal Structure of a σ70 Subunit Fragment from E. coli RNA Polymerase , 1996, Cell.

[173]  J. Hirschman,et al.  Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[174]  M. Chamberlin,et al.  DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[175]  G. Cornelis,et al.  The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors , 1995, Infection and immunity.

[176]  R. Burgess,et al.  Factor Stimulating Transcription by RNA Polymerase , 1969, Nature.

[177]  Arthur Thompson,et al.  Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica , 2002, Molecular microbiology.

[178]  K. Rudd,et al.  rpoE, the gene encoding the second heat‐shock sigma factor, sigma E, in Escherichia coli. , 1995, The EMBO journal.

[179]  G. Schoolnik,et al.  The Mycobacterium tuberculosis ECF sigma factor σE: role in global gene expression and survival in macrophages † , 2001, Molecular microbiology.

[180]  S. Gottesman,et al.  The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. , 1996, The EMBO journal.

[181]  F. Ausubel,et al.  Differential Roles of the Pseudomonas aeruginosaPA14 rpoN Gene in Pathogenicity in Plants, Nematodes, Insects, and Mice , 2001, Journal of bacteriology.

[182]  R. Losick,et al.  Cascades of sigma factors , 1981, Cell.

[183]  K. Rudd,et al.  Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[184]  A. Camilli,et al.  Vibrio cholerae Requires rpoS for Efficient Intestinal Colonization , 2000, Infection and Immunity.

[185]  T. Silhavy,et al.  Periplasmic stress and ECF sigma factors. , 2001, Annual review of microbiology.

[186]  S. Heu,et al.  Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes , 1994, Journal of bacteriology.

[187]  RseB Binding to the Periplasmic Domain of RseA Modulates the RseA:ςE Interaction in the Cytoplasm and the Availability of ςE·RNA Polymerase* , 2000, The Journal of Biological Chemistry.

[188]  S. Arvidson,et al.  Transcriptional control of the agr‐dependent virulence gene regulator, RNAIII, in Staphylococcus aureus , 1996, Molecular microbiology.

[189]  R. Hengge-aronis,et al.  Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in Escherichia coli , 1995, Journal of bacteriology.

[190]  A. Cheung,et al.  Molecular Interactions between Two Global Regulators,sar and agr, in Staphylococcus aureus * , 1998, The Journal of Biological Chemistry.

[191]  T. Thomas,et al.  Cold stress response in Archaea , 2000, Extremophiles.

[192]  S. Hasnain,et al.  The extracytoplasmic function sigma factors: role in bacterial pathogenesis. , 2004, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[193]  F. Heffron,et al.  Multiple Fimbrial Adhesins Are Required for Full Virulence of Salmonella typhimurium in Mice , 1998, Infection and Immunity.

[194]  R. Dixon,et al.  Domain Architectures of σ54-Dependent Transcriptional Activators , 2003 .

[195]  X. Liu,et al.  An alternative sigma factor controls transcription of flagellar class-III operons in Escherichia coli: gene sequence, overproduction, purification and characterization. , 1995, Gene.

[196]  T. Kubori,et al.  Flagellar filament elongation can be impaired by mutations in the hook protein FlgE of Salmonella typhimurium: a possible role of the hook as a passage for the anti‐sigma factor FlgM , 1998, Molecular microbiology.

[197]  D. Martin,et al.  Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors , 1994, Journal of bacteriology.

[198]  D. Missiakas,et al.  The extracytoplasmic function sigma factors: role and regulation , 1998, Molecular microbiology.

[199]  R. Belas,et al.  Sequence and genetic analysis of multiple flagellin-encoding genes from Proteus mirabilis. , 1994, Gene.

[200]  L. Pratt,et al.  The response regulator SprE controls the stability of RpoS. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[201]  H. Shuman,et al.  The Legionella pneumophila rpoS Gene Is Required for Growth within Acanthamoeba castellanii , 1999, Journal of bacteriology.

[202]  S. Lory,et al.  Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[203]  O. Namy,et al.  Characterization of the Operon Encoding the Alternative ςB Factor from Bacillus anthracis and Its Role in Virulence , 2000, Journal of bacteriology.

[204]  Kathryn J. Boor,et al.  Listeria monocytogenes σB Regulates Stress Response and Virulence Functions , 2003 .

[205]  R. Haas,et al.  Cloning and genetic characterization of a Hellcobacter pylori flagellin gene , 1992, Molecular microbiology.

[206]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[207]  M Buck,et al.  In vivo studies on the interaction of RNA polymerase-sigma 54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex. , 1989, Journal of molecular biology.

[208]  D. Fink,et al.  sigmaB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. , 2004, Microbiology.

[209]  W. Haldenwang The sigma factors of Bacillus subtilis , 1995, Microbiological reviews.

[210]  Y. Kyōgoku,et al.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. , 1999, Genes & development.

[211]  T. Abee,et al.  Identification of Sigma Factor σB-Controlled Genes and Their Impact on Acid Stress, High Hydrostatic Pressure, and Freeze Survival in Listeria monocytogenes EGD-e , 2004, Applied and Environmental Microbiology.

[212]  E. Charpentier,et al.  Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by ClpC , 2000, Molecular microbiology.

[213]  Koreaki Ito,et al.  YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. , 2002, Genes & development.

[214]  C. Kang,et al.  Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. , 1996, Genes & Development.

[215]  C. Gross,et al.  Is hsp70 the cellular thermometer? , 1991, Trends in biochemical sciences.

[216]  R. Burgess,et al.  Use of in vitro protein synthesis from polymerase chain reaction-generated templates to study interaction of Escherichia coli transcription factors with core RNA polymerase and for epitope mapping of monoclonal antibodies. , 1991, The Journal of biological chemistry.

[217]  J. Graham,et al.  Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[218]  M. Wiedmann,et al.  Sigma(B)-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. , 2003, Microbiology.

[219]  C. Price,et al.  General Stress Transcription Factor ςB and Sporulation Transcription Factor ςH Each Contribute to Survival of Bacillus subtilis under Extreme Growth Conditions , 1998, Journal of bacteriology.

[220]  M. Cashel,et al.  Conserved Region 3 of Escherichia coli σ70 Is Implicated in the Process of Abortive Transcription* , 1996, The Journal of Biological Chemistry.

[221]  M. Russel Phage assembly: a paradigm for bacterial virulence factor export? , 1994, Science.

[222]  T. Silhavy,et al.  Alpha: the Cinderella subunit of RNA polymerase. , 1992, The Journal of biological chemistry.

[223]  P. Model,et al.  Characterization and sequence of the Escherichia coli stress-induced psp operon. , 1991, Journal of molecular biology.

[224]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[225]  J. Radolf,et al.  RpoS Is Not Central to the General Stress Response in Borrelia burgdorferi but Does Control Expression of One or More Essential Virulence Determinants , 2004, Infection and Immunity.

[226]  J. Helmann,et al.  RNA Polymerase and Sigma Factors , 2002 .

[227]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[228]  R. Roop,et al.  The HtrA stress response protease contributes to resistance of Brucella abortus to killing by murine phagocytes , 1996, Infection and immunity.

[229]  M. Chadsey,et al.  The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium sigma28 RNA polymerase holoenzyme. , 1998, Genes & development.

[230]  J. Helmann The extracytoplasmic function (ECF) sigma factors. , 2002, Advances in microbial physiology.

[231]  J. Kaguni,et al.  A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli , 1989, Journal of bacteriology.

[232]  S. Rice,et al.  The alternative sigma factor RpoN regulates the quorum sensing gene rhlI in Pseudomonas aeruginosa. , 2003, FEMS microbiology letters.

[233]  K. Kutsukake,et al.  Molecular dissection of the flagellum-specific anti-sigma factor, FlgM, of Salmonella typhimurium , 1995, Molecular and General Genetics MGG.

[234]  M. Bally,et al.  RpoS-dependent stress tolerance in Pseudomonas aeruginosa. , 1999, Microbiology.

[235]  T. Mizuno,et al.  Quantitative control of the stationary phase‐specific sigma factor, sigma S, in Escherichia coli: involvement of the nucleoid protein H‐NS. , 1995, The EMBO journal.

[236]  S. Payne,et al.  Shigella flexneri DegP Facilitates IcsA Surface Expression and Is Required for Efficient Intercellular Spread , 2002, Infection and Immunity.

[237]  S. Engelmann,et al.  Analysis of the induction of general stress proteins of Bacillus subtilis. , 1994, Microbiology.

[238]  G. Schoolnik,et al.  Role of rpoS in Stress Survival and Virulence of Vibrio cholerae , 1998, Journal of bacteriology.

[239]  T. K. Misra,et al.  Alternative transcription factor sigmaSB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar , 1997, Journal of bacteriology.

[240]  R. Macnab,et al.  Flagella and motility , 1996 .

[241]  A. Manna,et al.  Transcriptional Analysis of Different Promoters in the sar Locus in Staphylococcus aureus , 1998, Journal of bacteriology.

[242]  K. Ohnishi,et al.  Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium , 1990, Molecular and General Genetics MGG.

[243]  M. Bailey,et al.  Requirement for FlhA in flagella assembly and swarm‐cell differentiation by Proteus mirabilis , 1995, Molecular microbiology.

[244]  N. Majdalani,et al.  DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[245]  P. Cash Proteomics of bacterial pathogens. , 2003, Advances in biochemical engineering/biotechnology.

[246]  R. Hengge-aronis,et al.  Recent insights into the general stress response regulatory network in Escherichia coli. , 2002, Journal of molecular microbiology and biotechnology.

[247]  S. Gottesman,et al.  The RssB response regulator directly targets sigma(S) for degradation by ClpXP. , 2001, Genes & development.

[248]  M. Bischoff,et al.  Influence of a Functional sigB Operon on the Global Regulators sar and agr inStaphylococcus aureus , 2001, Journal of bacteriology.

[249]  S. Engelmann,et al.  Proteomics, DNA arrays and the analysis of still unknown regulons and unknown proteins of Bacillus subtilis and pathogenic gram-positive bacteria. , 2000, International journal of medical microbiology : IJMM.

[250]  F. Fang,et al.  The alternative sigma factor katF (rpoS) regulates Salmonella virulence. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[251]  R. Hengge-aronis,et al.  Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[252]  K. Murakami,et al.  Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex , 2002, Science.

[253]  K. Klose,et al.  The novel σ54‐ and σ28‐dependent flagellar gene transcription hierarchy of Vibrio cholerae , 2001, Molecular microbiology.

[254]  C. Gross,et al.  Multiple sigma subunits and the partitioning of bacterial transcription space. , 2003, Annual review of microbiology.

[255]  N. Hibler,et al.  Virulence properties of Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (sigmaE) , 1996, Infection and immunity.

[256]  Carol A Gross,et al.  A chaperone network controls the heat shock response in E. coli. , 2004, Genes & development.

[257]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[258]  V. Venturi,et al.  Quorum-Sensing System and Stationary-Phase Sigma Factor (rpoS) of the Onion Pathogen Burkholderia cepacia Genomovar I Type Strain, ATCC 25416 , 2003, Applied and Environmental Microbiology.

[259]  V. Robbe-Saule,et al.  The Salmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes , 1994, Journal of bacteriology.

[260]  G. Storz,et al.  The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. , 1996, The EMBO journal.

[261]  M. Gribskov,et al.  The sigma 70 family: sequence conservation and evolutionary relationships , 1992, Journal of bacteriology.

[262]  S. Foster,et al.  Sigma Factor B and RsbU Are Required for Virulence in Staphylococcus aureus-Induced Arthritis and Sepsis , 2004, Infection and Immunity.

[263]  G. Altavilla,et al.  The Extra Cytoplasmic Function Sigma Factor σE Is Essential for Mycobacterium tuberculosis Virulence in Mice , 2004, Infection and Immunity.

[264]  Sébastien Rodrigue,et al.  σ Factors and Global Gene Regulation in Mycobacterium tuberculosis , 2004, Journal of bacteriology.

[265]  T. Ezaki,et al.  Salmonella typhi rpoS mutant is less cytotoxic than the parent strain but survives inside resting THP-1 macrophages. , 1998, FEMS microbiology letters.

[266]  G. Kovacikova,et al.  The Alternative Sigma Factor σE Plays an Important Role in Intestinal Survival and Virulence in Vibrio cholerae , 2002, Infection and Immunity.

[267]  C. O’Byrne,et al.  Role of ςB in Heat, Ethanol, Acid, and Oxidative Stress Resistance and during Carbon Starvation inListeria monocytogenes , 2001, Applied and Environmental Microbiology.

[268]  S. Pyo,et al.  Effect of Heat Shock and Mutations in ClpL and ClpP on Virulence Gene Expression in Streptococcus pneumoniae , 2003, Infection and Immunity.

[269]  L. Nover Heat Shock Response , 1991 .

[270]  Wei Li,et al.  Identification and structure of the anti-sigma factor-binding domain of the disulphide-stress regulated sigma factor sigma(R) from Streptomyces coelicolor. , 2002, Journal of molecular biology.

[271]  A. Hofmann,et al.  Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi , 1993, Infection and immunity.

[272]  M. Merrick,et al.  In a class of its own — the RNA polymerase sigma factor σ;54 (σN) , 1993 .

[273]  J. Oliver,et al.  RpoS-Dependent Stress Response and Exoenzyme Production in Vibrio vulnificus , 2003, Applied and Environmental Microbiology.

[274]  S. Kustu,et al.  The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription , 1991, Cell.

[275]  G. Storz,et al.  The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF‐I) protein , 1998, The EMBO journal.

[276]  G. Mittenhuber An inventory of genes encoding RNA polymerase sigma factors in 31 completely sequenced eubacterial genomes. , 2002, Journal of molecular microbiology and biotechnology.

[277]  D. Martin,et al.  Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response , 1994, Journal of bacteriology.

[278]  R. Sauer,et al.  OMP Peptide Signals Initiate the Envelope-Stress Response by Activating DegS Protease via Relief of Inhibition Mediated by Its PDZ Domain , 2003, Cell.

[279]  S. Cordwell,et al.  Comparative proteomics of bacterial pathogens , 2001, Proteomics.

[280]  F. Neidhardt,et al.  Escherichia coli proteome analysis using the gene‐protein database , 1997, Electrophoresis.

[281]  R. Blumenthal,et al.  Mapping regulatory networks in microbial cells. , 1999, Trends in microbiology.

[282]  M. Wiedmann,et al.  General Stress Transcription Factor ςB and Its Role in Acid Tolerance and Virulence ofListeria monocytogenes , 1998, Journal of bacteriology.

[283]  J. Gralla Transcriptional control—Lessons from an E. coli promoter data base , 1991, Cell.

[284]  James C. Hu,et al.  Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. , 1989, Journal of molecular biology.

[285]  F. Liang,et al.  An Immune Evasion Mechanism for Spirochetal Persistence in Lyme Borreliosis , 2002, The Journal of experimental medicine.

[286]  Y. Ohya,et al.  Transcriptional analysis of the flagellar regulon of Salmonella typhimurium , 1990, Journal of bacteriology.

[287]  R. Losick,et al.  A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis , 1979, Nature.

[288]  C. Gross,et al.  Polypeptides containing highly conserved regions of transcription initiation factor σ 70 exhibit specificity of binding to promoter DNA , 1992, Cell.

[289]  Y. Komeda,et al.  Transcriptional control of flagellar genes in Escherichia coli K-12 , 1986, Journal of bacteriology.

[290]  R. Fernandez,et al.  Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence , 1996, Infection and immunity.

[291]  R. Kornberg,et al.  Mechanism and regulation of yeast RNA polymerase II transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[292]  F. Cabello,et al.  Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[293]  D. Pierson,et al.  The ClpP protein, a subunit of the Clp protease, modulates ail gene expression in Yersinia enterocolitica , 1997, Molecular microbiology.

[294]  A. Ishihama,et al.  Mapping of the Rsd Contact Site on the Sigma 70 Subunit of Escherichia coli RNA Polymerase , 2001, Journal of bacteriology.

[295]  Eduardo N. Taboada,et al.  Genome-wide Expression Analyses of Campylobacter jejuni NCTC11168 Reveals Coordinate Regulation of Motility and Virulence by flhA*[boxs] , 2004, Journal of Biological Chemistry.

[296]  Michael Hecker,et al.  Characterization of the ςB Regulon inStaphylococcus aureus , 2000, Journal of bacteriology.