Gravity-driven flow of a shear-thinning power-law fluid over a permeable plane

The flow of a thin layer of power-law fluid on a porous inclined plane is considered. The unsteady equations of motion are depth-integrated according to the von Karman momentum integral method. The variation of the velocity distribution with the depth is accounted for, and it is furthermore assumed that the flow through the porous medium is governed by the modified Darcy’s law. The stability condition is deduced considering the hierarchy of kinematic and gravity waves. The response of the linearized model to a Dirac-delta disturbance in unbounded domain is analytically deduced, in both stable and unstable conditions 1624 C. Di Cristo, M. Iervolino and A. Vacca of flow. The influence of the effect of power-law exponent and bottom permeability on the disturbance propagation is finally analyzed, suggesting indications about the choice of the bottom permeability in order to improve the performance of industrial processes.

[1]  Andrea Vacca,et al.  Waves Dynamics in a Linearized Mud-Flow Shallow Model , 2013 .

[2]  Christina W. Tsai,et al.  Linear Analysis of Shallow Water Wave Propagation in Open Channels , 2001 .

[3]  Andrea Vacca,et al.  Green’s function of the linearized Saint-Venant equations in laminar and turbulent flows , 2012, Acta Geophysica.

[4]  M. Sirwah,et al.  Non-linear analysis of creeping flow on the inclined permeable substrate plane subjected to an electric field , 2012 .

[5]  Manoranjan Mishra,et al.  Peristaltic transport of a power-law fluid in a porous tube , 2004 .

[6]  P. Julien,et al.  Formation of roll waves in laminar sheet flow , 1986 .

[7]  P. Monkewitz,et al.  LOCAL AND GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS , 1990 .

[8]  A. Porporato,et al.  Closure of "Green’s Function of the Linearized de Saint-Venant Equations" , 2006 .

[9]  A. Vacca,et al.  Discussion of “Analysis of Dynamic Wave Model for Unsteady Flow in an Open Channel” by Maurizio Venutelli , 2012 .

[10]  R. Usha,et al.  Thin Newtonian film flow down a porous inclined plane: Stability analysis , 2008 .

[11]  Andrea Vacca,et al.  Boundary conditions effect on linearized mud-flow shallow model , 2013, Acta Geophysica.

[12]  J. Pascal Linear stability of fluid flow down a porous inclined plane , 1999 .

[13]  S. Middleman,et al.  Power-Law Flow through a Packed Tube , 1965 .

[14]  Barbara Zanuttigh,et al.  Roll-waves prediction in dense granular flows , 2009 .

[15]  Chiang C. Mei,et al.  Roll waves on a shallow layer of mud modelled as a power-law fluid , 1994, Journal of Fluid Mechanics.

[16]  J. Napiorkowski,et al.  Effect of downstream control in diffusion routing , 1984 .

[17]  G. Lebon,et al.  Thin-film flow of a power-law liquid falling down an inclined plate , 2004 .

[18]  J. P. Pascal,et al.  Instability of power-law fluid flow down a porous incline , 2006 .

[19]  M. Velarde,et al.  Stability analysis of thin film flow along a heated porous wall , 2009 .

[20]  Qiusheng Liu,et al.  Instabilities and transient behaviors of a liquid film flowing down a porous inclined plane , 2010 .

[21]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[22]  C. Hwang,et al.  Linear stability of power law liquid film flows down an inclined plane , 1994 .

[23]  Y O ¨ E L F O R T E,et al.  Long surface wave instability in dense granular flows , 2003 .

[24]  On the convective nature of roll waves instability , 2005 .

[25]  R. Usha,et al.  Effect of permeability on the instability of a non-Newtonian film down a porous inclined plane , 2010 .

[26]  T. Brooke Benjamin,et al.  Wave formation in laminar flow down an inclined plane , 1957, Journal of Fluid Mechanics.

[27]  J. Pascal,et al.  Instability in gravity-driven flow over uneven permeable surfaces , 2010 .

[28]  C. A. Perazzo,et al.  Steady and traveling flows of a power-law liquid over an incline , 2004 .

[29]  J. Pascal,et al.  Instability in gravity-driven flow over uneven surfaces , 2009 .

[30]  J. Pascal,et al.  Gravity-driven flow over heated, porous, wavy surfaces , 2011 .

[31]  M. Venutelli Analysis of Dynamic Wave Model for Unsteady Flow in an Open Channel , 2011 .

[32]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[33]  Chia-Shun Yih,et al.  Stability of Liquid Flow down an Inclined Plane , 1963 .

[34]  B. S. Dandapat,et al.  Waves on a film of power-law fluid flowing down an inclined plane at moderate Reynolds number , 2001 .

[35]  James C. I. Dooge,et al.  The linear downstream response of a generalized uniform channel , 1988 .

[36]  J. Berlamont,et al.  Unstable Turbulent Flow in Open Channels , 1981 .

[37]  Minimum channel length for roll-wave generation , 2008 .

[38]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[39]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[40]  A. Vacca,et al.  Influence of Relative Roughness and Reynolds Number on the Roll-Waves Spatial Evolution , 2010 .