Complex reassortment of polymerase genes in Asian influenza A virus H7 and H9 subtypes.

[1]  G. Zang,et al.  HUMAN INFECTION WITH AVIAN INFLUENZA A (H7N9) VIRUS , 2014, Revista do Instituto de Medicina Tropical de Sao Paulo.

[2]  Hualan Chen,et al.  The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. , 2014, The Journal of general virology.

[3]  Huachen Zhu,et al.  Amino Acid Substitutions in Polymerase Basic Protein 2 Gene Contribute to the Pathogenicity of the Novel A/H7N9 Influenza Virus in Mammalian Hosts , 2014, Journal of Virology.

[4]  R. Bergquist,et al.  Spatial and temporal analysis of human infection with avian influenza A(H7N9) virus in China, 2013. , 2013, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[5]  Z. Weng,et al.  Substitution rates of the internal genes in the novel avian H7N9 influenza virus. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[6]  Z. Weng,et al.  Rapid reassortment of internal genes in avian influenza A(H7N9) virus. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[7]  G. Gao,et al.  Sequential reassortments underlie diverse influenza H7N9 genotypes in China. , 2013, Cell host & microbe.

[8]  David K. Smith,et al.  The genesis and source of the H7N9 influenza viruses causing human infections in China , 2013, Nature.

[9]  Hualan Chen,et al.  H5N1 Hybrid Viruses Bearing 2009/H1N1 Virus Genes Transmit in Guinea Pigs by Respiratory Droplet , 2013, Science.

[10]  Yu Wang,et al.  Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses , 2013, The Lancet.

[11]  Songnian Hu,et al.  EvolView, an online tool for visualizing, annotating and managing phylogenetic trees , 2012, Nucleic Acids Res..

[12]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[13]  Y. Bi,et al.  High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses , 2011, Proceedings of the National Academy of Sciences.

[14]  S. Cusack,et al.  Influenza A Virus Polymerase: Structural Insights into Replication and Host Adaptation Mechanisms* , 2010, The Journal of Biological Chemistry.

[15]  Yiping Fan,et al.  Response to Comment on "Large-Scale Sequence Analysis of Avian Influenza Isolates" , 2006, Science.

[16]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[17]  B. Murphy,et al.  A single amino acid in the PB2 gene of influenza A virus is a determinant of host range , 1993, Journal of virology.

[18]  Weizhong Yang,et al.  Human Infection with a Novel Avian-Origin Influenza A (H7N9) Virus. , 2018 .