A computationally efficient procedure for calculating gas radiative properties using the exponential wide band model

Abstract A procedure to optimize the radiative property calculations of gas-mixtures using the exponential wide band model (EWBM) is described in this paper. The procedure is applicable to any nitrogen-gas mixtures containing H 2 O, CO 2 , CH 4 , CO, S0 2 , NO, C 2 H 2 , N 2 O and NH 3 . The use of this procedure in calculating the total emissivity of H 2 OCO 2 mixtures yields computational times comparable to those required by conventional emissivity correlations. The generality of the EWBM, along with minimized computational requirements, makes the procedure very attractive for incorporation into CFD codes for flame calculations. The coupling of the EWBM with classical solution methods of the RTE is discussed.

[1]  S. Penner,et al.  Approximate band absorption calculations for methane , 1965 .

[2]  D. Edwards,et al.  Theoretical expression of water vapor spectral emissivity with allowance for line structure , 1968 .

[3]  C. L. Tien Band and total emissivity of ammonia , 1973 .

[4]  C. Tien,et al.  Infrared radiation properties of methane at elevated temperatures , 1985 .

[5]  P. J. Foster,et al.  The total emissivities of luminous and non-luminous flames , 1974 .

[6]  S. Chan,et al.  Total band absorptance of non-isothermal infrared-radiating gases , 1969 .

[7]  Bo G Leckner,et al.  Spectral and total emissivity of water vapor and carbon dioxide , 1972 .

[8]  D. K. Edwards,et al.  Molecular Gas Band Radiation , 1976 .

[9]  T. F. Smith,et al.  Evaluation of Coefficients for the Weighted Sum of Gray Gases Model , 1982 .

[10]  Ashok T. Modak,et al.  Exponential wide band parameters for the pure rotational band of water vapor , 1979 .

[11]  D. Edwards,et al.  Scaling of vibration-rotation band parameters for nonhomogeneous gas radiation , 1970 .

[12]  EFFICIENT CALCULATIONS OF GAS RADIATION FROM TURBULENT FLAMES , 1994 .

[13]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[14]  S. S. Penner,et al.  Effect of (partial) overlapping of spectral lines on the total emissivity of H2O-CO2 mixtures (T⪞800°K) , 1966 .

[15]  A. Balakrishnan,et al.  Thermal radiation by combustion gases , 1973 .

[16]  B. W. Webb,et al.  A Spectral Line-Based Weighted-Sum-of-Gray-Gases Model for Arbitrary RTE Solvers , 1993 .

[17]  C. L. Tien,et al.  Infrared radiation properties of nitrous oxide , 1972 .

[18]  Ashok T. Modak,et al.  Radiation from products of combustion , 1979 .

[19]  J. D. Felske,et al.  Wide band characterization of the total band absorptance of overlapping infrared gas bands , 1975 .

[20]  D. Edwards,et al.  Comparison of Models for Correlation of Total Band Absorption , 1964 .

[21]  R. Goody,et al.  A statistical model for water‐vapour absorption , 1952 .

[22]  E. Djavdan,et al.  A comparison between weighted sum of gray gases and statistical narrow-band radiation models for combustion applications , 1994 .

[23]  Son Tae-Ho Comparison of engineering models of nongray behavior of combustion products , 1993 .