Use of Eight-node Curvilinear Domains in Discrete Singular Convolution Method for Free Vibration Analysis of Annular Sector Plates with Simply Supported Radial Edges

Free vibration analysis of annular sector plate is studied using an eight-node curvilinear domain. The method of discrete singular convolution (DSC) is used for computations. Radial edges of plates are simply supported; however, various edge conditions are taken into account for circumferential edge. In the proposed approach, an irregular physical domain is transformed into a rectangular domain by using geometric coordinate transformation. The DSC procedures are then applied to discretization of the transformed set of governing equations and boundary conditions. The effects of mode numbers, vertex angle, boundary conditions and outer-to-inner radius ratio on the vibration frequencies are investigated. It is seen that the results obtained by DSC method shows very good agreement with that of other available analytical and numerical solutions for the plate problems under investigation.

[1]  K. Liew,et al.  Buckling And Vibration Of Annular Mindlin Plates With Internal Concentric Ring Supports Subject To In-Plane Radial Pressure , 1994 .

[2]  Charles W. Bert,et al.  The differential quadrature method for irregular domains and application to plate vibration , 1996 .

[3]  Ö. Civalek Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC) , 2007 .

[4]  C. Wang,et al.  Bending of linearly tapered annular Mindlin plates , 2001 .

[5]  K. M. Liew,et al.  VIBRATION ANALYSIS OF CIRCULAR MINDLIN PLATES USING THE DIFFERENTIAL QUADRATURE METHOD , 1997 .

[6]  Yang Xiang,et al.  Vibration of annular sector mindlin plates with internal radial line and circumferential arc supports , 1995 .

[7]  F. Au,et al.  Effect of built-in edges on 3-D vibrational characteristics of thick circular plates , 2006 .

[8]  Y. Xiang,et al.  On the missing modes when using the exact frequency relationship between Kirchhoff and Mindlin plates , 2005 .

[9]  Yang Xiang,et al.  Plate vibration under irregular internal supports , 2002 .

[10]  K. M. Liew,et al.  Use of two-dimensional orthogonal polynomials for vibration analysis of circular and elliptical plates , 1992 .

[11]  Guo-Wei Wei,et al.  Solving quantum eigenvalue problems by discrete singular convolution , 2000 .

[12]  Yang Xiang,et al.  DSC‐Ritz method for the free vibration analysis of Mindlin plates , 2005 .

[13]  Ömer Civalek,et al.  Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method , 2007 .

[14]  C. Wang,et al.  Bending of annular sectorial Mindlin Plates using Kirchhoff results , 2000 .

[15]  Ömer Civalek,et al.  FREE VIBRATION ANALYSIS OF COMPOSITE CONICAL SHELLS USING THE DISCRETE SINGULAR CONVOLUTION ALGORITHM , 2006 .

[16]  Decheng Wan,et al.  Numerical solution of incompressible flows by discrete singular convolution , 2002 .

[17]  Yang Xiang,et al.  A NOVEL APPROACH FOR THE ANALYSIS OF HIGH-FREQUENCY VIBRATIONS , 2002 .

[18]  K. Liew,et al.  Analysis of annular Reissner/Mindlin plates using differential quadrature method , 1998 .

[19]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[20]  Yoshihiro Narita,et al.  Natural frequencies of simply supported circular plates , 1980 .

[21]  Guo-Wei Wei,et al.  Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates , 2004 .

[22]  Yang Xiang,et al.  Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm , 2002 .

[23]  Ding Zhou,et al.  Three-dimensional free vibration of thick circular plates on Pasternak foundation , 2006 .

[24]  G. Yamada,et al.  Natural Frequencies of Thick Annular Plates , 1982 .

[25]  Ömer Civalek,et al.  Numerical analysis of free vibrations of laminated composite conical and cylindrical shells , 2007 .

[26]  G. Wei Discrete singular convolution for beam analysis , 2001 .

[27]  K. Liew,et al.  Elasticity solutions for free vibrations of annular plates from three-dimensional analysis , 2000 .

[28]  C. Shu,et al.  Free Vibration Analysis of Curvilinear Quadrilateral Plates by the Differential Quadrature Method , 2000 .

[29]  K. M. Liew,et al.  Analysis of moderately thick circular plates using differential quadrature method , 1997 .

[30]  Ding Zhou,et al.  Three-dimensional vibration analysis of circular and annular plates via the Chebyshev–Ritz method , 2003 .

[31]  K. Liew,et al.  On the use of 2-D orthogonal polynomials in the Rayleigh-Ritz method for flexural vibration of annular sector plates of arbitrary shape , 1993 .

[32]  S. M. Dickinson,et al.  On the free, transverse vibration of annular and circular, thin, sectorial plates subject to certain complicating effects , 1989 .

[33]  Guo-Wei Wei,et al.  On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method , 2006, J. Comput. Phys..

[34]  Ömer Civalek,et al.  An efficient method for free vibration analysis of rotating truncated conical shells , 2006 .

[35]  Yang Xiang,et al.  VIBRATION OF CIRCULAR AND ANNULAR MINDLIN PLATES WITH INTERNAL RING STIFFENERS , 1996 .

[36]  A. W. Leissa,et al.  Literature Review : Plate Vibration Research, 1976 - 1980: Classical Theory , 1981 .

[37]  K. Liew Frequency solutions for circular plates with internal supports and discontinuous boundaries , 1992 .

[38]  K. M. Liew,et al.  An eight-node curvilinear differential quadrature formulation for Reissner/Mindlin plates , 1997 .

[39]  A. Leissa,et al.  Vibrations of Mindlin Sectorial Plates Using the Ritz Method Considering Stress Singularities , 2006 .

[40]  Arthur W. Leissa,et al.  Recent Research in Plate Vibrations: Classical Theory , 1977 .

[41]  Xinling Wang,et al.  On free vibration analysis of circular annular plates with non-uniform thickness by the differential quadrature method , 1995 .

[42]  Y. Xiang Vibration of circular Mindlin plates with concentric elastic ring supports , 2003 .

[43]  Gui-Rong Liu,et al.  Free vibration analysis of circular plates using generalized differential quadrature rule , 2002 .

[44]  Arthur W. Leissa,et al.  PLATE VIBRATION RESEARCH, 1976-1980: CLASSICAL THEORY , 1981 .

[45]  Yang Xiang,et al.  Mode shapes and stress-resultants of circular Mindlin plates with free edges , 2004 .

[46]  K. Liew,et al.  Numerical aspects for free vibration of thick plates part I: Formulation and verification , 1998 .

[47]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[48]  Yang Xiang,et al.  Discrete singular convolution for the prediction of high frequency vibration of plates , 2002 .

[49]  G. Wei,et al.  VIBRATION ANALYSIS BY DISCRETE SINGULAR CONVOLUTION , 2001 .

[50]  Gui-Rong Liu,et al.  Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule , 2001 .

[51]  Yang Xiang,et al.  The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution , 2001 .

[52]  Y. Xiang,et al.  DSC analysis of free-edged beams by an iteratively matched boundary method , 2005 .

[53]  Yang Xiang,et al.  Discrete singular convolution and its application to the analysis of plates with internal supports. Part 2: Applications , 2002 .

[54]  Yang Xiang,et al.  Free vibration analysis of stepped circular Mindlin plates , 2005 .

[55]  K. M. Liew,et al.  DIFFERENTIAL QUADRATURE METHOD FOR VIBRATION ANALYSIS OF SHEAR DEFORMABLE ANNULAR SECTOR PLATES , 2000 .

[56]  Ö. Civalek A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution , 2007 .

[57]  A. W. Leissa,et al.  Recent studies in plate vibrations: 1981-85. I: Classical theory , 1987 .

[58]  A. Leissa,et al.  RECENT RESEARCH IN PLATE VIBRATIONS, 1981-1985: PART I. CLASSICAL THEORY , 1987 .

[59]  Gui-Rong Liu,et al.  a Mesh-Free Method for Static and Free Vibration Analyses of Thin Plates of Complicated Shape , 2001 .

[60]  G. Wei,et al.  A new algorithm for solving some mechanical problems , 2001 .

[61]  G. Wei,et al.  Conjugate filter approach for solving Burgers' equation , 2002 .

[62]  K. M. Liew,et al.  Free vibration analysis of Mindlin sector plates : numerical solutions by differential quadrature method , 1999 .

[63]  A. W. Leissa,et al.  LITERATURE REVIEW: survey and analysis of the Shock and Vibration literature: Recent Studies in Plate Vibrations: 1981-85 Part I. Classical Theory , 1987 .

[64]  Xinwei Wang,et al.  FREE VIBRATION ANALYSES OF THIN SECTOR PLATES BY THE NEW VERSION OF DIFFERENTIAL QUADRATURE METHOD , 2004 .

[65]  Z. R. Li,et al.  DSC-Ritz method for high-mode frequency analysis of thick shallow shells , 2004 .

[66]  Yang Xiang,et al.  Flexural vibration of shear deformable circular and annular plates on ring supports , 1993 .

[67]  Ömer Civalek,et al.  Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach , 2007 .

[68]  G. Wei,et al.  DSC ANALYSIS OF RECTANGULAR PLATES WITH NON-UNIFORM BOUNDARY CONDITIONS , 2002 .

[69]  Ömer Civalek,et al.  Nonlinear analysis of thin rectangular plates on Winkler–Pasternak elastic foundations by DSC–HDQ methods , 2007 .

[70]  Axisymmetric free vibration of thick annular plates , 1980 .

[71]  Ömer Civalek,et al.  Vibration analysis of conical panels using the method of discrete singular convolution , 2006 .

[72]  Yang Xiang,et al.  TRANSVERSE VIBRATION OF THICK ANNULAR SECTOR PLATES , 1993 .

[73]  Guo-Wei Wei Wavelets generated by using discrete singular convolution kernels , 2000 .