Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques

We advocate a compressed sensing strategy that consists of multiplying the signal of interest by a wide bandwidth modulation before projection onto randomly selected vectors of an orthonormal basis. First, in a digital setting with random modulation, considering a whole class of sensing bases including the Fourier basis, we prove that the technique is universal in the sense that the required number of measurements for accurate recovery is optimal and independent of the sparsity basis. This universality stems from a drastic decrease of coherence between the sparsity and the sensing bases, which for a Fourier sensing basis relates to a spread of the original signal spectrum by the modulation (hence the name "spread spectrum"). The approach is also efficient as sensing matrices with fast matrix multiplication algorithms can be used, in particular in the case of Fourier measurements. Second, these results are confirmed by a numerical analysis of the phase transition of the ℓ1-minimization problem. Finally, we show that the spread spectrum technique remains effective in an analog setting with chirp modulation for application to realistic Fourier imaging. We illustrate these findings in the context of radio interferometry and magnetic resonance imaging.

[1]  A. Hewish,et al.  The synthesis of large radio telescopes by the use of radio interferometers , 1959 .

[2]  Joong Soo Ma,et al.  Mobile Communications , 2003, Lecture Notes in Computer Science.

[3]  Bernhard Schölkopf,et al.  Optimization of k‐space trajectories for compressed sensing by Bayesian experimental design , 2010, Magnetic resonance in medicine.

[4]  Heikki Salo,et al.  The Spitzer Survey of Stellar Structure in Galaxies ( S 4 G ) , 2010, 1010.1592.

[5]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[6]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[7]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[8]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[9]  Leon Axel,et al.  Combination of Compressed Sensing and Parallel Imaging for Highly-Accelerated 3 D First-Pass Cardiac Perfusion MRI , 2009 .

[10]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[11]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.

[12]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[13]  Albert P. Chen,et al.  Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI. , 2008, Journal of magnetic resonance.

[14]  Jong Chul Ye,et al.  Improved k–t BLAST and k–t SENSE using FOCUSS , 2007, Physics in medicine and biology.

[15]  Justin K. Romberg,et al.  Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..

[16]  Justin P. Haldar,et al.  Compressed-Sensing MRI With Random Encoding , 2011, IEEE Transactions on Medical Imaging.

[17]  Michael Lustig,et al.  3D compressed sensing for highly accelerated hyperpolarized 13C MRSI with in vivo applications to transgenic mouse models of cancer , 2010, Magnetic resonance in medicine.

[18]  F. Sebert,et al.  Compressed Sensing MRI with Random B1 field , 2007 .

[19]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[20]  Jean-Philippe Thiran,et al.  Spread spectrum for interferometric and magnetic resonance imaging , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[21]  Martin Ryle,et al.  The Synthesis of Large Radio Telescopes , 1960 .

[22]  Dong Liang,et al.  Toeplitz random encoding MR imaging using compressed sensing , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[23]  Leslie Ying,et al.  Toeplitz Random Encoding for Reduced Acquisition Using Compressed Sensing , 2009 .

[24]  M. Lustig,et al.  SPIRiT: Iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space , 2010, Magnetic resonance in medicine.

[25]  M. Lustig,et al.  Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies , 2011, Magnetic resonance in medicine.

[26]  J. Högbom,et al.  APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .

[27]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[28]  A. Zoubir,et al.  EURASIP Journal on Advances in Signal Processing , 2011 .

[29]  Jean-Philippe Thiran,et al.  Spread spectrum for compressed sensing techniques in magnetic resonance imaging , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[30]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[31]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[32]  Jean-Philippe Thiran,et al.  Spread Spectrum Magnetic Resonance Imaging , 2012, IEEE Transactions on Medical Imaging.

[33]  M. Ryle,et al.  Solar Radiation on 175 Mc./s. , 1946, Nature.

[34]  R. M. Emberson National Radio Astronomy Observatory , 1959, Science.

[35]  L. Ying,et al.  Accelerating SENSE using compressed sensing , 2009, Magnetic resonance in medicine.

[36]  Trac D. Tran,et al.  Fast compressive sampling with structurally random matrices , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[37]  P. Vandergheynst,et al.  Compressed sensing imaging techniques for radio interferometry , 2008, 0812.4933.

[38]  Marcus Magnor,et al.  SparseRI: A Compressed Sensing Framework for Aperture Synthesis Imaging in Radio Astronomy , 2010 .

[39]  T. Cornwell,et al.  A simple maximum entropy deconvolution algorithm , 1985 .

[40]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[41]  Peter Boesiger,et al.  Compressed sensing in dynamic MRI , 2008, Magnetic resonance in medicine.

[42]  Yannick Boursier,et al.  Compressed sensing for radio interferometry: spread spectrum imaging techniques , 2009, Optical Engineering + Applications.

[43]  Joel A. Tropp,et al.  Improved Analysis of the subsampled Randomized Hadamard Transform , 2010, Adv. Data Sci. Adapt. Anal..

[44]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[45]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[46]  Laurent Jacques,et al.  Compressive sampling of pulse trains: Spread the spectrum! , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[47]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[48]  Yannick Boursier,et al.  Spread spectrum for imaging techniques in radio interferometry , 2009, ArXiv.

[49]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 2017, 1708.09761.

[50]  Jean-Philippe Thiran,et al.  Accelerated MR imaging with spread spectrum encoding , 2011 .

[51]  Feng Li,et al.  The application of compressive sampling to radio astronomy I: Deconvolution , 2011, 1106.1711.

[52]  Trac D. Tran,et al.  Fast and Efficient Compressive Sensing Using Structurally Random Matrices , 2011, IEEE Transactions on Signal Processing.

[53]  M Usman,et al.  k‐t group sparse: A method for accelerating dynamic MRI , 2011, Magnetic resonance in medicine.