Tight bounds on the Fourier growth of bounded functions on the hypercube

We give tight bounds on the degree ` homogenous parts f` of a bounded function f on the cube. We show that if f : {±1} → [−1, 1] has degree d, then ‖f`‖∞ is bounded by d/`!, and ‖f̂`‖1 is bounded by d`e( `+1 2 )n `−1 2 . We describe applications to pseudorandomness and learning theory. We use similar methods to generalize the classical Pisier’s inequality from convex analysis. Our analysis involves properties of real-rooted polynomials that may be useful elsewhere.

[1]  A. Backurs,et al.  On the sum of L 1 influences , 2013 .

[2]  Mohammad Bavarian,et al.  On the Sum of L1 Influences , 2013, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[3]  Shachar Lovett,et al.  Pseudorandom Generators from Polarizing Random Walks , 2018, Electron. Colloquium Comput. Complex..

[4]  Avishay Tal,et al.  Fourier growth of parity decision trees , 2021, Empir. Softw. Eng..

[5]  Yishay Mansour,et al.  An O(n^(log log n)) Learning Algorithm for DNT under the Uniform Distribution , 1995, J. Comput. Syst. Sci..

[6]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[7]  V. Milman,et al.  New volume ratio properties for convex symmetric bodies in ℝn , 1987 .

[8]  G. Pisier,et al.  Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert , 1980 .

[9]  An optimal separation of randomized and Quantum query complexity , 2020, Electron. Colloquium Comput. Complex..

[10]  Jean Bourgain,et al.  On Martingales Transforms in Finite Dimensional Lattices with an Appendix on the K‐Convexity Constant , 1984 .

[11]  Avishay Tal,et al.  Improved pseudorandomness for unordered branching programs through local monotonicity , 2017, Electron. Colloquium Comput. Complex..

[12]  Yishay Mansour,et al.  Learning Boolean Functions via the Fourier Transform , 1994 .

[13]  Nicole Tomczak-Jaegermann,et al.  Projections onto Hilbertian subspaces of Banach spaces , 1979 .

[14]  P. Brändén Unimodality, log-concavity, real-rootedness and beyond , 2015 .

[15]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[16]  F. John Extremum Problems with Inequalities as Subsidiary Conditions , 2014 .

[17]  Shachar Lovett,et al.  Fractional pseudorandom generators from any fourier level , 2020, CCC.

[18]  V. Milman,et al.  Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space , 1985 .

[19]  Avishay Tal,et al.  Towards Optimal Separations between Quantum and Randomized Query Complexities , 2019, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[20]  Avishay Tal,et al.  Degree and Sensitivity: tails of two distributions , 2016, Electron. Colloquium Comput. Complex..

[21]  Yuval Filmus,et al.  Bounds on the sum of L1 influences , 2014, ArXiv.

[22]  G. Pisier Sur les espaces de Banach $K$-convexes , 1980 .

[23]  Vitali Milman,et al.  Isomorphic symmetrization and geometric inequalities , 1988 .

[24]  Yishay Mansour,et al.  An O(nlog log n) learning algorithm for DNF under the uniform distribution , 1992, COLT '92.

[25]  Thomas Steinke,et al.  Pseudorandomness for Regular Branching Programs via Fourier Analysis , 2013, APPROX-RANDOM.