Differences in winter cold hardiness reflect the geographic range disjunction of Neophasia menapia and Neophasia terlooii (Lepidoptera: Pieridae).

[1]  F. Bozinovic,et al.  Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures , 2016, Journal of evolutionary biology.

[2]  B. Sinclair,et al.  An invitation to measure insect cold tolerance: Methods, approaches, and workflow. , 2015, Journal of thermal biology.

[3]  B. Sinclair,et al.  Cold tolerance of the montane Sierra leaf beetle, Chrysomela aeneicollis. , 2015, Journal of insect physiology.

[4]  Sandra Larrivee,et al.  Impact of short‐term exposure to low subzero temperatures on egg hatch in the hemlock looper, Lambdina fiscellaria , 2013 .

[5]  S. Pincebourde,et al.  Microclimatic challenges in global change biology , 2013, Global change biology.

[6]  Bai-lian Li,et al.  Influence of temperature on the northern distribution limits of Scirpophaga incertulas Walker (Lepidoptera: Pyralidae) in China , 2012 .

[7]  J. M. Scriber,et al.  Impacts of climate warming on hybrid zone movement: Geographically diffuse and biologically porous “species borders” , 2011 .

[8]  S. Moharramipour,et al.  Cold Hardiness and Supercooling Capacity in the Overwintering Larvae of the Codling Moth, Cydia pomonella , 2010, Journal of insect science.

[9]  B. Sinclair,et al.  Repeated stress exposure results in a survival–reproduction trade-off in Drosophila melanogaster , 2010, Proceedings of the Royal Society B: Biological Sciences.

[10]  R. Vilà,et al.  Phylogeny and historical biogeography of the subtribe Aporiina (Lepidoptera: Pieridae): implications for the origin of Australian butterflies , 2007 .

[11]  V. Košťál Eco-physiological phases of insect diapause. , 2006, Journal of insect physiology.

[12]  P. Fields,et al.  Winter climates and coldhardiness in terrestrial insects , 2005 .

[13]  Brian D. Farrell,et al.  Phylogeography of the longhorn cactus beetle Moneilema appressum LeConte (Coleoptera: Cerambycidae): was the differentiation of the Madrean sky islands driven by Pleistocene climate changes? , 2005, Molecular ecology.

[14]  Z. Fric,et al.  Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale , 2003 .

[15]  Steven L. Chown,et al.  Insects at low temperatures: an ecological perspective , 2003 .

[16]  C. Parmesan,et al.  Poleward shifts in geographical ranges of butterfly species associated with regional warming , 1999, Nature.

[17]  C. Allen,et al.  Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  James A. Scott,et al.  The Butterflies of North America: A Natural History and Field Guide , 1986 .

[19]  W. Ciesla FOREST INSECT DAMAGE FROM HIGH-ALTITUDE COLOR-IR PHOTOS , 1974 .

[20]  J. Bale Insect cold hardiness: A matter of life and death , 2013 .

[21]  B. Sinclair,et al.  The overwintering physiology of the emerald ash borer, Agrilus planipennis fairmaire (coleoptera: buprestidae). , 2011, Journal of insect physiology.

[22]  Richard E. Lee Low Temperature Biology of Insects: A primer on insect cold-tolerance , 2010 .

[23]  L. Sømme Supercooling and winter survival in terrestrial arthropods , 1982 .