Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review

[1]  Ho Seon Ahn,et al.  Visualization study of the effects of nanoparticles surface deposition on convective flow boiling CHF from a short heated wall , 2011 .

[2]  V. Terekhov,et al.  The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat transfer , 2010 .

[3]  S. M. You,et al.  Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters , 2010 .

[4]  Saeid Vafaei,et al.  Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel , 2010 .

[5]  S. M. You,et al.  Nanocoating characterization in pool boiling heat transfer of pure water , 2010 .

[6]  V. Terekhov,et al.  The mechanism of heat transfer in nanofluids: state of the art (review). Part 1. Synthesis and properties of nanofluids , 2010 .

[7]  In Cheol Bang,et al.  Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux , 2010 .

[8]  Zhen-hua Liu,et al.  Boiling characteristics of carbon nanotube suspensions under sub-atmospheric pressures , 2010 .

[9]  Ho Seon Ahn,et al.  On the Mechanism of Pool Boiling Critical Heat Flux Enhancement in Nanofluids , 2010 .

[10]  Ho Seon Ahn,et al.  Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface , 2010 .

[11]  S. J. Kim,et al.  Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure , 2010 .

[12]  Ramesh Chandra,et al.  Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater , 2010 .

[13]  S. M. You,et al.  Pool boiling characteristics of low concentration nanofluids , 2010 .

[14]  Yong Hoon Jeong,et al.  An experimental study on CHF enhancement in flow boiling using Al2O3 nano-fluid , 2010 .

[15]  S. Kakaç,et al.  Enhanced thermal conductivity of nanofluids: a state-of-the-art review , 2010 .

[16]  Jacopo Buongiorno,et al.  Modification of sandblasted plate heaters using nanofluids to enhance pool boiling critical heat flux , 2010 .

[17]  Kaufui V. Wong,et al.  Applications of Nanofluids: Current and Future , 2010 .

[18]  Simon Tung,et al.  A review on development of nanofluid preparation and characterization , 2009 .

[19]  Dongsoo Jung,et al.  Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes , 2009 .

[20]  S. Kakaç,et al.  Review of convective heat transfer enhancement with nanofluids , 2009 .

[21]  Moo Hwan Kim,et al.  Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids , 2009 .

[22]  Jacopo Buongiorno,et al.  On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles , 2009 .

[23]  William M. Worek,et al.  Nanofluids and critical heat flux, experimental and analytical study , 2009 .

[24]  Jacopo Buongiorno,et al.  Experimental Study of Flow Critical Heat Flux in Alumina-Water, Zinc-Oxide-Water, and Diamond-Water Nanofluids , 2009 .

[25]  Ranganathan Kumar,et al.  Effect of surface tension on nanotube nanofluids , 2009 .

[26]  Hyunjung Kim,et al.  Wide range parametric study for the pool boiling of nano-fluids with a circular plate heater , 2009, J. Vis..

[27]  Jungho Kim,et al.  Nanofluid boiling: The effect of surface wettability , 2008 .

[28]  Dongsheng Wen,et al.  Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF) , 2008 .

[29]  Won Joon Chang,et al.  Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids , 2008 .

[30]  L. Liao,et al.  Sorption and agglutination phenomenon of nanofluids on a plain heating surface during pool boiling , 2008 .

[31]  Ranganathan Kumar,et al.  Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment , 2008 .

[32]  Jacopo Buongiorno,et al.  Alumina Nanoparticles Enhance the Flow Boiling Critical Heat Flux of Water at Low Pressure , 2008 .

[33]  D. Wen On the role of structural disjoining pressure to boiling heat transfer of thermal nanofluids , 2008 .

[34]  Zhen-hua Liu,et al.  Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface , 2007 .

[35]  S. Kim,et al.  Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux , 2007 .

[36]  M. R. Kashinath Parameters Affecting Critical Heat Flux Of Nanofluids: Heater Size, Pressure Orientation And Anti-freeze Addition , 2007 .

[37]  Moo Hwan Kim,et al.  Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids , 2007 .

[38]  Jeongbae Kim,et al.  Experimental studies on CHF characteristics of nano-fluids at pool boiling , 2007 .

[39]  Somchai Wongwises,et al.  A critical review of convective heat transfer of nanofluids , 2007 .

[40]  Somchai Wongwises,et al.  Critical review of heat transfer characteristics of nanofluids , 2007 .

[41]  I. Mudawar,et al.  Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels , 2007 .

[42]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[43]  Sarit K. Das,et al.  Heat Transfer in Nanofluids—A Review , 2006 .

[44]  Jeongbae Kim,et al.  Technical Note Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids , 2006 .

[45]  J. Buongiorno,et al.  Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids , 2006 .

[46]  Khellil Sefiane,et al.  On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids , 2006 .

[47]  Jeongbae Kim,et al.  EXPERIMENTAL STUDY ON CHF CHARACTERISTICS OF WATER-TIO2 NANO-FLUIDS , 2006 .

[48]  Peng Chen,et al.  Characteristics of Nucleate Boiling With Gold Nanoparticles in Water , 2006 .

[49]  Ranganathan Kumar,et al.  Heat Transfer Behavior of Oxide Nanoparticles in Pool Boiling Experiment , 2006 .

[50]  T. Theofanous,et al.  High heat flux boiling and burnout as microphysical phenomena : Mounting evidence and opportunities , 2006 .

[51]  Ranganathan Kumar,et al.  Role of ions in pool boiling heat transfer of pure and silica nanofluids , 2005 .

[52]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .

[53]  Steven J. Oldenburg,et al.  Pool Boiling Heat Transfer of Alumina-Water, Zinc Oxide-Water and Alumina-Water+Ethylene Glycol Nanofluids , 2005 .

[54]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[55]  Soon-Heung Chang,et al.  Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool , 2004 .

[56]  P. F. Vassallo,et al.  Pool boiling heat transfer experiments in silica–water nano-fluids , 2004 .

[57]  J. H. Kim,et al.  Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer , 2003 .

[58]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[59]  A. Nikolov,et al.  Spreading of nanofluids on solids , 2003, Nature.

[60]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[61]  Mark E. Steinke,et al.  Contact angles and interface behavior during rapid evaporation of liquid on a heated surface , 2002 .

[62]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[63]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[64]  Nikolay Ivanov Kolev How accurately can we predict nucleate boiling , 1995 .

[65]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[66]  S. M. You,et al.  The onset of film boiling on small cylinders: local dryout and hydrodynamic critical heat flux mechanisms , 1994 .

[67]  V. Dhir,et al.  Effect of Surface Wettability on Active Nucleation Site Density During Pool Boiling of Water on a Ve , 1993 .

[68]  R. A. Nelson,et al.  Possible mechanisms of macrolayer formation , 1992 .

[69]  John H. Lienhard,et al.  Surface Factors Influencing Burnout on Flat Heaters , 1992 .

[70]  R. A. Nelson,et al.  Unifying the controlling mechanisms for the critical heat flux and quenching : the ability of liquid to contact the hot surface , 1992 .

[71]  Y. Katto,et al.  A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids , 1983 .

[72]  J. Lienhard,et al.  Hydrodynamic Prediction of Peak Pool-boiling Heat Fluxes from Finite Bodies , 1973 .

[73]  H. J van Ouwerkerk,et al.  Burnout in pool boiling the stability of boiling mechanisms , 1972 .

[74]  N. Zuber Hydrodynamic aspects of boiling heat transfer (thesis) , 1959 .

[75]  J. J. Bikerman,et al.  The Surface Roughness and Contact Angle. , 1950 .