Some extensions of the Pr\'ekopa-Leindler inequality using Borell's stochastic approach
暂无分享,去创建一个
[1] C. Borell. Convex set functions ind-space , 1975 .
[2] F. Barthe. On a reverse form of the Brascamp-Lieb inequality , 1997, math/9705210.
[3] C. Borell,et al. Diffusion Equations and Geometric Inequalities , 2000 .
[4] V. V. Buldygin,et al. Brunn-Minkowski inequality , 2000 .
[5] D. Cordero-Erausquin. On Berndtsson’s generalization of Prékopa’s theorem , 2005 .
[6] J. K. Hunter,et al. Measure Theory , 2007 .
[7] Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles , 2004 .
[8] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[9] B. Berndtsson. Prekopa's theorem and Kiselman's minimum principle for plurisubharmonic functions , 1998 .
[10] Joseph Lehec. Short Probabilistic Proof of the Brascamp-Lieb and Barthe Theorems , 2014, Canadian Mathematical Bulletin.
[11] B. Maurey. Some deviation inequalities , 1990, math/9201216.
[12] F. Barthe. A Continuous Version of the Brascamp-Lieb Inequalities , 2004 .