Synergistic effect of colloidal nano and micro-silica on the microstructure and mechanical properties of mortar using full factorial design

[1]  Hamid Eskandari-Naddaf,et al.  Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete , 2020 .

[2]  A. Madadi,et al.  Structural response of ferrocement panels incorporating lightweight expanded clay and perlite aggregates: Experimental, theoretical and statistical analysis , 2019, Engineering Structures.

[3]  H. Eskandari-Naddaf,et al.  Effect of cement strength class on the prediction of compressive strength of cement mortar using GEP method , 2019, Construction and Building Materials.

[4]  H. Eskandari-Naddaf,et al.  ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar , 2018, Construction and Building Materials.

[5]  H. Eskandari-Naddaf,et al.  Corrosion behavior and optimization of air‐entrained reinforced concrete, incorporating microsilica , 2018, Structural Concrete.

[6]  M. Najimi,et al.  Sodium Sulfate Resistance of Mortars Containing Combined Nanosilica and Microsilica , 2018, Journal of Materials in Civil Engineering.

[7]  A. Bădănoiu,et al.  Synthesis and characterization of titania-silica fume composites and their influence on the strength of self-cleaning mortar , 2018 .

[8]  L. G. Li,et al.  Combined usage of micro-silica and nano-silica in concrete: SP demand, cementing efficiencies and synergistic effect , 2018 .

[9]  Chiara Giosuè,et al.  Corrosion behaviour of bare and galvanized steel in geopolymer and Ordinary Portland Cement based mortars with the same strength class exposed to chlorides , 2018 .

[10]  E. Reyes,et al.  Influence of nano- and micro-silica additions on the durability of a high-performance self-compacting concrete , 2018 .

[11]  Aladdin M. Sharkawi,et al.  Synergistic influence of micro-nano silica mixture on durability performance of cementious materials , 2018 .

[12]  M. Najimi,et al.  Effects of Blaine and Tricalcium Aluminate on the Sulfate Resistance of Nanosilica-Containing Mortars , 2018 .

[13]  J. Bernal,et al.  Fresh and mechanical behavior of a self-compacting concrete with additions of nano-silica, silica fume and ternary mixtures , 2018 .

[14]  H. Eskandari-Naddaf,et al.  Performance evaluation of dry-pressed concrete curbs with variable cement grades by using Taguchi method , 2016, Ain Shams Engineering Journal.

[15]  Z. H. Huang,et al.  Combined effects of micro-silica and nano-silica on durability of mortar , 2017 .

[16]  M. Najimi,et al.  Influence of dispersion methods on sulfate resistance of nanosilica-contained mortars , 2017 .

[17]  A. Meden,et al.  Influence of Various Soluble Carbonates on the Hydration of Portland Cement studied by X-ray Diffraction. , 2017, Acta chimica Slovenica.

[18]  Z. H. Huang,et al.  Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar , 2017 .

[19]  Muhammad N. S Hadi,et al.  Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method , 2017 .

[20]  Hamid Eskandari-Naddaf,et al.  ANN prediction of cement mortar compressive strength, influence of cement strength class , 2017 .

[21]  M. Y. Durgun,et al.  A Taguchi approach for investigating the engineering properties of concretes incorporating barite, colemanite, basaltic pumice and ground blast furnace slag , 2017 .

[22]  M. Palou,et al.  The correlation between porosity and mechanical properties of multicomponent systems consisting of Portland cement–slag–silica fume–metakaolin , 2017 .

[23]  V. Mechtcherine,et al.  Micro- and nanoparticle mineral coating for enhanced properties of carbon multifilament yarn cement-based composites , 2017 .

[24]  R. Bennacer,et al.  Influence of slurried silica fume on microstructure and tritiated water diffusivity of cement pastes , 2017 .

[25]  M. Gholhaki,et al.  Concrete made with hybrid blends of crumb rubber and metakaolin: Optimization using Response Surface Method , 2016 .

[26]  Caijun Shi,et al.  Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC) , 2016 .

[27]  Faiz Shaikh,et al.  Effect of nano and micro-silica on bond behaviour of steel and polypropylene fibres in high volume fly ash mortar , 2016 .

[28]  Chengqing Wu,et al.  Influences of nano-particles on dynamic strength of ultra-high performance concrete , 2016 .

[29]  H. Atahan,et al.  Improved durability of cement mortars exposed to external sulfate attack: The role of nano & micro additives , 2016 .

[30]  Peiyu Yan,et al.  Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete , 2016 .

[31]  M. C. Ortiz,et al.  Design of bespoke lightweight cement mortars containing waste expanded polystyrene by experimental statistical methods , 2016 .

[32]  H. Eskandari,et al.  Effect of 32.5 and 42.5 Cement Grades on ANN Prediction of Fibrocement Compressive Strength , 2016 .

[33]  K. Hossain,et al.  Effects of the addition of nanosilica on the rheology, hydration and development of the compressive strength of cement mortars , 2015 .

[34]  J. de Brito,et al.  Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2) , 2015 .

[35]  A. Moragues,et al.  Effect of silica fume fineness on the improvement of Portland cement strength performance , 2015 .

[36]  Ali R. Pouladkhan,et al.  Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete , 2015 .

[37]  T. Pheeraphan,et al.  Effect of sand, fly ash, and coarse aggregate gradation on preplaced aggregate concrete studied through factorial design , 2015 .

[38]  R. Ibrahim,et al.  Characterization of nano-silica prepared from local silica sand and its application in cement mortar using optimization technique , 2015 .

[39]  G. Barluenga,et al.  Effect of silica-based nano and micro additions on SCC at early age and on hardened porosity and permeability , 2015 .

[40]  H. Eskandari Designing, Proposing and Comparing the Methods Predicting the Compressive Strength of the Ferro cement Mortar , 2015 .

[41]  Hongjian Du,et al.  Durability performances of concrete with nano-silica , 2014 .

[42]  Faiz Uddin Ahmed Shaikh,et al.  A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes , 2014 .

[43]  S. Aleem,et al.  Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica , 2014 .

[44]  Alaa M. Rashad,et al.  A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash , 2014 .

[45]  T. Pulngern,et al.  Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2 , 2014 .

[46]  A. I. Zad,et al.  Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete , 2013 .

[47]  Qahir N. S. Al-Kadi,et al.  Development of self-compacting concrete using contrast constant factorial design , 2013 .

[48]  C. Poon,et al.  Prediction of compressive strength of recycled aggregate concrete using artificial neural networks , 2013 .

[49]  Xudong Chen,et al.  Influence of porosity on compressive and tensile strength of cement mortar , 2013 .

[50]  Surendra P. Shah,et al.  Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar , 2013 .

[51]  Surendra P. Shah,et al.  Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials , 2012 .

[52]  Ioanna Papayianni,et al.  Influence of nano-SiO2 on the Portland cement pastes , 2012 .

[53]  Jahidul Islam,et al.  Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag , 2012 .

[54]  R. Siddique,et al.  Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar , 2011 .

[55]  Abbas Booshehrian,et al.  Effect of nano-SiO2 particles on properties of cement mortar applicable for ferrocement elements , 2011 .

[56]  A. Nazari,et al.  The role of SiO2 nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete , 2011 .

[57]  A. Saatchi,et al.  Optimization of the pulsed current gas tungsten arc welding (PCGTAW) parameters for corrosion resistance of super duplex stainless steel (UNS S32760) welds using the Taguchi method , 2011 .

[58]  A. Nazari,et al.  THE EFFECTS OF SIO2 NANOPARTICLES ON PHYSICAL AND MECHANICAL PROPERTIES OF HIGH STRENGTH COMPACTING CONCRETE , 2010 .

[59]  Mohamad Amran Mohd Salleh,et al.  Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete , 2010 .

[60]  Dachamir Hotza,et al.  Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design , 2010 .

[61]  A. Davoodi,et al.  Tuning DOS measuring parameters based on double-loop EPR in H2SO4 containing KSCN by Taguchi method , 2010 .

[62]  Velu Saraswathy,et al.  Estimation of the permeability of silica fume cement concrete , 2010 .

[63]  James Beaudoin,et al.  Cement and Concrete Nanoscience and Nanotechnology , 2010, Materials.

[64]  J. Labrincha,et al.  Influence of added nanosilica and/or silica fume on fresh and hardened properties of mortars and cement pastes , 2009 .

[65]  Jong-Bin Park,et al.  Characteristics of cement mortar with nano-SiO2 particles , 2007 .

[66]  V. Sirivivatnanon,et al.  Kinetics of geopolymerization: Role of Al2O3 and SiO2 , 2007 .

[67]  Y. Qing,et al.  Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume , 2007 .

[68]  C. Poon,et al.  Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete , 2006 .

[69]  Ye Qing,et al.  A comparative study on the pozzolanic activity between nano-SiO2 and silica fume , 2006 .

[70]  J. Ou,et al.  Abrasion resistance of concrete containing nano-particles for pavement , 2006 .

[71]  J. Ou,et al.  Microstructure of cement mortar with nano-particles , 2004 .

[72]  Serhan Ozdemir,et al.  The use of GA-ANNs in the modelling of compressive strength of cement mortar , 2003 .

[73]  M. Stamatakis,et al.  The influence of biogenic micro-silica-rich rocks on the properties of blended cements , 2003 .

[74]  C. Dalfen Domestic Models in the International Context , 1976 .

[75]  Gunnar Larsen,et al.  Microscopic point measuring: a quantitative petrographic method of determining the Ca(OH)2 content of the cement paste of concrete , 1961 .