Formal Matrix Integrals and Combinatorics of Maps

This article is a short review on the relationship between convergent matrix integrals, formal matrix integrals, and combinatorics of maps.

[1]  F. David PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS , 1985 .

[2]  K. Mclaughlin,et al.  Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration , 2002, math-ph/0211022.

[3]  Vladimir Kazakov,et al.  Critical properties of randomly triangulated planar random surfaces , 1985 .

[4]  M. Y. Mo,et al.  Isomonodromic deformation of resonant rational connections , 2005, nlin/0510011.

[5]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[6]  Duplantier,et al.  Conformal spectra of polymers on a random surface. , 1988, Physical review letters.

[7]  Master loop equations, free energy and correlations for the chain of matrices , 2003, hep-th/0309036.

[8]  B. Eynard,et al.  Hermitian matrix model free energy: Feynman graph technique for all genera , 2005, hep-th/0504116.

[9]  Exact solution of the O(n) model on a random lattice , 1995, hep-th/9506193.

[10]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[11]  G. Bonnet,et al.  The Potts-q random matrix model: loop equations, critical exponents, and rational case , 1999 .

[12]  P. Zinn-Justin,et al.  Two-matrix model with ABAB interaction , 1999 .

[13]  Exactly solvable Potts models, bond- and tree-like percolation on dynamical (random) planar lattice , 1988 .

[14]  B. Eynard,et al.  Genus one contribution to free energy in Hermitian two-matrix model , 2004 .

[15]  V. Kazakov Bilocal Regularization of Models of Random Surfaces , 1985 .

[16]  Free energy topological expansion for the 2-matrix model , 2006, math-ph/0603003.

[17]  Bertrand Eynard,et al.  Breakdown of universality in multi-cut matrix models , 2000 .

[18]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[19]  P. Zinn-Justin The six-vertex model on random lattices , 2000 .

[20]  V. Kazakov PERCOLATION ON A FRACTAL WITH THE STATISTICS OF PLANAR FEYNMAN GRAPHS: EXACT SOLUTION , 1989 .

[21]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[22]  É. Brézin,et al.  Correlations and symmetry breaking in gapped matrix models , 1999 .

[23]  The O(n) model on a random surface: critical points and large-order behaviour , 1992, hep-th/9204082.

[24]  Joel E. Cohen,et al.  Random matrices and their applications , 1986 .

[25]  P. Zinn-Justin The Dilute Potts Model on Random Surfaces , 1999 .

[26]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[27]  Strings with discrete target space , 1991, hep-th/9112059.

[28]  G. M. Cicuta Phase transitions and random matrices , 2000 .

[29]  Double Scaling Limit in Random Matrix Models and a Nonlinear Hierarchy of Differential Equations , 2002, hep-th/0209087.

[30]  C. Kristjansen,et al.  An iterative solution of the three-colour problem on a random lattice , 1998 .

[31]  Pavel Bleher,et al.  Random Matrix Models and Their Applications , 2001 .

[32]  Riemannian symmetric superspaces and their origin in random‐matrix theory , 1996, math-ph/9808012.

[33]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[34]  S. Weinberg,et al.  Two-dimensional Quantum Gravity and random surfaces , 1992 .

[35]  Second and Third Order Observables of the Two-Matrix Model , 2003, hep-th/0309192.

[36]  D. Gross,et al.  Two dimensional quantum gravity and random surfaces : Jerusalem Winter School for Theoretical Physics, Jerusalem, Israel, 27 Dec. 90 - 4 Jan. 91 , 1992 .

[37]  B. Eynard,et al.  Topological expansion of the 2-matrix model correlation functions: diagrammatic rules for a residue formula , 2005, math-ph/0504058.

[38]  Two-band random matrices , 1997, cond-mat/9709309.

[40]  Vladimir Kazakov,et al.  Ising model on a dynamical planar random lattice: Exact solution , 1986 .

[41]  G. Parisi,et al.  Planar diagrams , 1978 .

[42]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[43]  A. Guionnet,et al.  Large Deviations Asymptotics for Spherical Integrals , 2002 .

[44]  Pavel Bleher,et al.  Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions. Disordered Phase , 2006 .

[45]  Strings in flat space and pp waves from ${\cal N}=4$ Super Yang Mills , 2002, hep-th/0202021.

[46]  S. Wadia Dyson-Schwinger equations approach to the large- N limit: Model systems and string representation of Yang-Mills theory , 1981 .

[47]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[48]  Ivan Kostov Exact solution of the six-vertex model on a random lattice , 2000 .

[49]  A. Guionnet,et al.  Combinatorial aspects of matrix models , 2005, math/0503064.

[50]  Large N expansion for normal and complex matrix ensembles , 2003, hep-th/0309253.

[51]  E. Wigner,et al.  On the statistical distribution of the widths and spacings of nuclear resonance levels , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[52]  Exact solution of the three-color problem on a random lattice , 2000, hep-th/0005190.

[53]  More on the exact solution of the O(n) model on a random lattice and an investigation of the case ∥n∥ > 2 , 1995, hep-th/9512052.

[54]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[55]  B. Eynard,et al.  Topological expansion for the 1-hermitian matrix model correlation functions , 2004 .

[56]  The 2-matrix model, biorthogonal polynomials, Riemann-Hilbert problem, and algebraic geometry , 2005, math-ph/0504034.

[57]  I. Kostov O($n$) Vector Model on a Planar Random Lattice: Spectrum of Anomalous Dimensions , 1989 .