Comparison of astrophysical laser frequency combs with respect to the requirements of HIRES

Precise astronomical spectroscopy with the forthcoming E-ELT and its high resolution spectrograph HIRES will address a number of important science cases,1 e.g. detection of atmospheres of exoplanets. Challenging technical requirements have been identified to achieve these cases, principal among which is the goal to achieve a radial velocity precision on the order of 10 cms-1. HIRES will experience systematic errors like intrapixel variations and random variations like fiber noise, caused by the non-uniform illumination of the coupling fibers, with these and other systematic errors affecting the performance of the spectrograph. Here, we describe the requirements for the calibration sources which may be used for mitigating such systematic errors in HIRES. Precise wavelength calibration with wide-mode-spacing laser frequency combs (LFCs), so called astrocombs, has been demonstrated with different astronomical spectrographs. Here we present a comparison of currently used astrocombs and outline a possible solution to meet the requirements of HIRES with a single broadband astrocomb.

[1]  Yohei Kobayashi,et al.  Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y(2)O(3) ceramic laser. , 2015, Optics express.

[2]  Michel Mayor,et al.  CODEX: An Ultra-stable High Resolution Spectrograph for the E-ELT , 2010 .

[3]  Roberto Maiolino,et al.  SIMPLE: a high-resolution near-infrared spectrometer for the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[4]  R. A. Probst,et al.  Spectral flattening of supercontinua with a spatial light modulator , 2013, Optics & Photonics - Optical Engineering + Applications.

[5]  R. A. Probst,et al.  Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph , 2012, Other Conferences.

[6]  Andrew Szentgyorgyi,et al.  In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1). , 2010, Optics express.

[7]  Scott A. Diddams,et al.  10-GHz Self-Referenced Optical Frequency Comb , 2009, Science.

[8]  Martin E. Fermann,et al.  Surpassing the path-limited resolution of Fourier-transform spectrometry with frequency combs , 2016 .

[9]  S. Osterman,et al.  Astronomical spectrograph calibration with broad-spectrum frequency combs , 2008, 0803.0565.

[10]  Gaspare Lo Curto,et al.  A laser frequency comb featuring sub-cm/s precision for routine operation on HARPS , 2014, Astronomical Telescopes and Instrumentation.

[11]  Antonio Manescau,et al.  High-precision wavelength calibration with laser frequency combs , 2007 .

[12]  Bruno Chazelas,et al.  A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs , 2012, Other Conferences.

[13]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[14]  Éric Depagne,et al.  Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm. , 2017, Optics express.

[15]  Marco Riva,et al.  Phase A: calibration concepts for HIRES , 2017, Optical Metrology.

[16]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[17]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[18]  T. Kippenberg,et al.  Full stabilization of a microresonator-based optical frequency comb. , 2008, Physical review letters.

[19]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[20]  R. Holzwarth,et al.  Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth , 2009 .

[21]  Andrew Szentgyorgyi,et al.  A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1 , 2008, Nature.

[22]  Gaspare Lo Curto,et al.  The exoplanet hunter HARPS: unequalled accuracy and perspectives toward 1 cm s-1 precision , 2006, SPIE Astronomical Telescopes + Instrumentation.

[23]  Antonio Manescau,et al.  A spectrograph for exoplanet observations calibrated at the centimetre-per-second level , 2012, Nature.

[24]  P. Plavchan,et al.  Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy , 2016, Nature Communications.

[25]  Daniel C. Hackett,et al.  A low-dispersion Fabry-Perot cavity for generation of a 30 GHz astrocomb spanning 140 nm , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[26]  D. Queloz,et al.  A Community Science Case for E-ELT HIRES , 2013, 1310.3163.

[27]  Andrew Szentgyorgyi,et al.  Visible wavelength astro-comb. , 2010, Optics express.

[28]  W. Seifert,et al.  CARMENES instrument overview , 2014, Astronomical Telescopes and Instrumentation.

[29]  Gerardo Avila,et al.  The exoplanet hunter HARPS: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[30]  Zhaowei Zhang,et al.  Mode-resolved 10-GHz frequency comb from a femtosecond optical parametric oscillator. , 2015, Optics letters.

[31]  Nicolas Buchschacher,et al.  HARPS-N OBSERVES THE SUN AS A STAR , 2015, 1511.02267.

[32]  A. Foltynowicz,et al.  Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and precision beyond the Voigt profile , 2016, 1612.04808.

[33]  F.X. Kartner,et al.  Octave Spanning 1 GHz Ti:sapphire Oscillator For HeNe CH4-based Frequency Combs and Clocks , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[34]  S. Osterman,et al.  A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration. , 2010, The Review of scientific instruments.

[35]  Andrew Szentgyorgyi,et al.  Optimization of filtering schemes for broadband astro-combs. , 2012, Optics express.

[36]  Brandon Botzer,et al.  Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. , 2012, Optics express.

[37]  Nicolas Buchschacher,et al.  An astro-comb calibrated solar telescope to search for the radial velocity signature of Venus , 2016, Astronomical Telescopes + Instrumentation.

[38]  S. Wong,et al.  Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source , 2009, LASE.

[39]  O. Hellmig,et al.  Space-borne frequency comb metrology , 2016 .

[40]  Giuseppe Marra,et al.  Common-path self-referencing interferometer for carrier-envelope offset frequency stabilization with enhanced noise immunity. , 2010, Optics letters.

[41]  Andrew Szentgyorgyi,et al.  Conjugate Fabry-Perot cavity pair for improved astro-comb accuracy. , 2012, Optics letters.

[42]  M. Riva,et al.  ESPRESSO: The next European exoplanet hunter , 2014, 1401.5918.

[43]  Chih-Hao Li,et al.  Broadband dispersion-free optical cavities based on zero group delay dispersion mirror sets. , 2010, Optics express.

[44]  J. Vernet,et al.  An overview of the E-ELT instrumentation programme , 2010, Astronomical Telescopes + Instrumentation.

[45]  Antonio Manescau,et al.  High‐precision calibration of spectrographs , 2010 .

[46]  A. Reiners,et al.  A laser-lock concept to reach cm s 1 -precision in Doppler experiments with Fabry-Pérot wavelength calibrators , 2014, 1408.6111.

[47]  Andrew Szentgyorgyi,et al.  Green astro-comb for HARPS-N , 2012, Astronomical Telescopes and Instrumentation.

[48]  Andrew Szentgyorgyi,et al.  Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph , 2015 .

[49]  H. C. Stempels,et al.  EELT-HIRES the high-resolution spectrograph for the E-ELT , 2016, Astronomical Telescopes + Instrumentation.

[50]  Andrew Szentgyorgyi,et al.  Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb. , 2012, Optics express.