Microwaves as a synthetic route for preparing electrochemically active TiO_2 nanoparticles

Nanocrystalline anatase was synthesized, using both domestic and laboratory microwave ovens, from different precursors. Nanoparticulate anatase was obtained after microwave irradiation of tetra-butyl orthotitanate solution in benzyl alcohol. As-synthesized samples have orange color due to the presence of organics that were eliminated after annealing at 500 °C, whereas the size of small anatase nanocrystals (around 8 nm) was preserved. Other nanocrystalline anatase samples were obtained from hexafluorotitanate-organic salt ionic liquid-like precursors. In this case, use of a domestic microwave oven and very short processing times (1–3 min irradiation time) were involved. Good specific capacity values and capacity retention at high C rates for insertion/deinsertion of Li^+were recorded when testing such nanoparticles as electrode material in lithium cells. The electrochemical performances were found be strongly dependent on the phase composition, which in turn could be tuned through the synthetic procedure.

[1]  A. Roig,et al.  Surface Reactivity of Iron Oxide Nanoparticles by Microwave- Assisted Synthesis; Comparison with the Thermal Decomposition Route , 2012 .

[2]  Sophie Cassaignon,et al.  Do TiO2 Nanoparticles Really Taste Better When Cooked in a Microwave Oven , 2012 .

[3]  A. Manthiram,et al.  Microwave-solvothermal synthesis of various polymorphs of nanostructured TiO2 in different alcohol media and their lithium ion storage properties. , 2012, Inorganic chemistry.

[4]  X. Su,et al.  Advanced titania nanostructures and composites for lithium ion battery , 2012, Journal of Materials Science.

[5]  P. Bruce,et al.  Nanoparticulate TiO2(B): an anode for lithium-ion batteries. , 2012, Angewandte Chemie.

[6]  Peng Zhang,et al.  Microwave-induced synthesis of porous single-crystal-like TiO2 with excellent lithium storage properties. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[7]  Zu-de Feng,et al.  Liquid phase deposition (LPD) of TiO2 thin films as photoanodes for cathodic protection of stainless steel , 2012 .

[8]  Hongzhi Wang,et al.  Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determination of chemical oxygen demand , 2012 .

[9]  M. R. Palacín,et al.  On the impact of the slurry mixing procedure in the electrochemical performance of composite electro , 2011 .

[10]  C. López,et al.  Ultrathin conformal coating for complex magneto-photonic structures. , 2011, Nanoscale.

[11]  F. Doğan,et al.  Processing and Dielectric Properties of TiO2 Thick Films for High‐Energy Density Capacitor Applications , 2011 .

[12]  Xue Chen,et al.  Facile synthesis and electrochemical characterization of porous and dense TiO2 nanospheres for lithium-ion battery applications , 2011 .

[13]  Laurence M. Peter,et al.  The Grätzel Cell: Where Next? , 2011 .

[14]  M. Wohlfahrt‐Mehrens,et al.  TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. , 2011, Small.

[15]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[16]  C. Domingo,et al.  Low-temperature and ambient-pressure synthesis of TiO2(B) , 2010 .

[17]  C. Domingo,et al.  Microwave radiation as heating method in the synthesis of titanium dioxide nanoparticles from hexafluorotitanate-organic salts , 2010 .

[18]  L. Kavan,et al.  Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase). , 2010 .

[19]  M. Niederberger,et al.  Microwave chemistry for inorganic nanomaterials synthesis. , 2010, Nanoscale.

[20]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[21]  M. S. El-shall,et al.  Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media , 2009 .

[22]  I. Mulla,et al.  Microwave-assisted synthesis and humidity sensing of nanostructured α-Fe2O3 , 2009 .

[23]  Cuilian Wen,et al.  Corrosion protection of AZ31 magnesium alloy by a TiO2 coating prepared by LPD method , 2009 .

[24]  Hun‐Gi Jung,et al.  Mesoporous TiO2 nano networks: Anode for high power lithium battery applications , 2009 .

[25]  Xiuwen Zheng,et al.  Efficient rapid microwave-assisted route to synthesize InP micrometer hollow spheres , 2009 .

[26]  V. Rives,et al.  Inorganic gels as precursors of TiO2 photocatalysts prepared by low temperature microwave or thermal treatment , 2008 .

[27]  Peter G. Bruce,et al.  Energy storage beyond the horizon: Rechargeable lithium batteries , 2008 .

[28]  P. Albouy,et al.  One pot synthesis of hierarchical porous silica membrane material with dispersed Pt nanoparticles using a microwave-assisted sol–gel route , 2008 .

[29]  G. Strouse,et al.  Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes. , 2008, Journal of the American Chemical Society.

[30]  Xin Zhang,et al.  Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate , 2008 .

[31]  Thomas Chung-Kuang Yang,et al.  Rapid Synthesis of Titania Nanowires by Microwave-Assisted Hydrothermal Treatments , 2008 .

[32]  M. Niederberger,et al.  One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. , 2008, Chemical communications.

[33]  G. Tompsett,et al.  How could and do microwaves influence chemistry at interfaces? , 2008, The journal of physical chemistry. B.

[34]  E. Longo,et al.  Influence of Microwave Heating on the Growth of Gadolinium-Doped Cerium Oxide Nanorods , 2008 .

[35]  Arie Zaban,et al.  Application of microwave superheating for the synthesis of TiO2 rods. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[36]  Y. Hwang,et al.  Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation? , 2007, Chemistry.

[37]  Zhenjiang Miao,et al.  Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. , 2007, Journal of the American Chemical Society.

[38]  Haoshen Zhou,et al.  Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode , 2007 .

[39]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[40]  Wen He,et al.  Microwave-assisted synthesis of anatase TiO2 nanorods with mesopores , 2007, Nanotechnology.

[41]  A. Gedanken,et al.  Carbon-coated core shell structured copper and nickel nanoparticles synthesized in an ionic liquid. , 2006, The journal of physical chemistry. B.

[42]  E. Morán,et al.  Microwave-assisted synthesis and magnetic study of nanosized Ni/NiO materials , 2006 .

[43]  D. Guyomard,et al.  Optimizing lithium battery performance from a tailor-made processing of the positive composite electrode , 2006 .

[44]  Akira Fujishima,et al.  TITANIUM DIOXIDE PHOTOCATALYSIS: PRESENT SITUATION AND FUTURE APPROACHES , 2006 .

[45]  Raoul Schroeder,et al.  Low‐Voltage, High‐Performance Organic Field‐Effect Transistors with an Ultra‐Thin TiO2 Layer as Gate Insulator , 2005 .

[46]  D. Stuerga,et al.  From a microwave flash-synthesized TiO2 colloidal suspension to TiO2 thin films. , 2005, Journal of colloid and interface science.

[47]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[48]  C. Kappe,et al.  Controlled microwave heating in modern organic synthesis. , 2004, Angewandte Chemie.

[49]  G. Stucky,et al.  Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. , 2002, Journal of the American Chemical Society.

[50]  G. Stucky,et al.  Benzyl alcohol and titanium tetrachloride - A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles , 2002 .

[51]  S. Deki,et al.  Titanium (IV) Oxide Thin Films Prepared from Aqueous Solution , 1996 .

[52]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[53]  D. Stuerga,et al.  Microwave heating as a new way to induce selectivity between competitive reactions. application to isomeric ratio control in sulfonation of naphthalene. , 1993 .

[54]  Jean-Marie Tarascon,et al.  Li Metal‐Free Rechargeable LiMn2O4/Carbon Cells: Their Understanding and Optimization. , 1992 .

[55]  J. Tarascon,et al.  Li Metal‐Free Rechargeable LiMn2 O 4 / Carbon Cells: Their Understanding and Optimization , 1992 .

[56]  D. Michael P. Mingos,et al.  Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry , 1991 .

[57]  T. Ohzuku,et al.  Nonaqueous lithium/titanium dioxide cell , 1979 .

[58]  O. Loew Ueber einige eigenthümliche Verbindungen von Silber mit eiweissartigen Körpern , 1883 .

[59]  C. M. Li,et al.  Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. , 2008, ACS nano.

[60]  L. Rasmusson,et al.  A 10-year follow-up study of titanium dioxide-blasted implants. , 2005, Clinical implant dentistry and related research.

[61]  Stashans,et al.  Theoretical study of lithium intercalation in rutile and anatase. , 1996, Physical review. B, Condensed matter.

[62]  W. N. Schreiner,et al.  Profile Fitting for Quantitative Analysis in X-Ray Powder Diffraction , 1982 .