Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation

In many practical periodic parameter estimation problems, the appropriate performance criteria are periodic in the parameter space. The existing mean-square-error (MSE) lower bounds, such as Cramér-Rao bound (CRB) and Barankin-type bounds do not provide valid lower bounds in such problems. In this paper, cyclic versions of the CRB and the Barankin-type bounds, Hammersley-Chapman-Robbins and McAulay-Seidman, are derived for non-Bayesian parameter estimation. The proposed bounds are lower bounds on the mean cyclic error (MCE) of any cyclic-unbiased estimator, where the cyclic-unbiasedness is defined by using Lehmann-unbiasedness. These MCE lower bounds can be readily obtained from existing MSE lower bounds and thus, can be easily calculated. The cyclic Barankin-type bounds and the performance of the maximum-likelihood (ML) estimator are compared in terms of MCE in Von-Mises distributed measurements problem and for frequency and amplitude estimation with Gaussian noise. In these problems, the ML estimator is found to be cyclic unbiased.

[1]  I. Vaughan L. Clarkson,et al.  Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator , 1994, IEEE Trans. Signal Process..

[2]  R. S. Bucy,et al.  An Optimal Phase Demodulator , 1975 .

[3]  João M. F. Xavier,et al.  Intrinsic distance lower bound for unbiased estimators on Riemannian manifolds , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[4]  F. Glave,et al.  A new look at the Barankin lower bound , 1972, IEEE Trans. Inf. Theory.

[5]  H. Cramér A contribution to the theory of statistical estimation , 1946 .

[6]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[7]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[8]  Joseph Tabrikian,et al.  A General Class of Outage Error Probability Lower Bounds in Bayesian Parameter Estimation , 2012, IEEE Transactions on Signal Processing.

[9]  H. Hendriks A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .

[10]  Yoram Bresler,et al.  A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.

[11]  Joseph Tabrikian,et al.  Bayesian cyclic bounds for periodic parameter estimation , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[12]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[13]  J. Hammersley On Estimating Restricted Parameters , 1950 .

[14]  Lawrence P. Seidman,et al.  A useful form of the Barankin lower bound and its application to PPM threshold analysis , 1969, IEEE Trans. Inf. Theory.

[15]  Steven Kay,et al.  Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[16]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[17]  I. Vaughan L. Clarkson,et al.  Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.

[18]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[19]  J. Tabrikian,et al.  Barankin Bounds for Target Localization by MIMO Radars , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..

[20]  Mohammed Nabil El Korso,et al.  Deterministic Performance Bounds on the Mean Square Error for Near Field Source Localization , 2013, IEEE Transactions on Signal Processing.

[21]  Arye Nehorai,et al.  Performance bounds for estimating vector systems , 2000, IEEE Trans. Signal Process..

[22]  Joseph Tabrikian,et al.  Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.

[23]  Edward M. Hofstetter,et al.  Barankin Bounds on Parameter Estimation , 1971, IEEE Trans. Inf. Theory.

[24]  Thomas L. Marzetta Computing the Barankin bound, by solving an unconstrained quadratic optimization problem , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[25]  Jeffrey L. Krolik,et al.  Barankin bounds for source localization in an uncertain ocean environment , 1999, IEEE Trans. Signal Process..

[26]  Pascal Larzabal,et al.  SNR threshold indicator in data-aided frequency synchronization , 2004, IEEE Signal Processing Letters.

[27]  Jonathan S. Abel,et al.  A bound on mean-square-estimate error , 1993, IEEE Trans. Inf. Theory.

[28]  Philippe Forster,et al.  On lower bounds for deterministic parameter estimation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  Joseph Tabrikian,et al.  Periodic CRB for non-Bayesian parameter estimation , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[30]  J. Tabrikian,et al.  Optimal Bayesian parameter estimation with periodic criteria , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.

[31]  B.C. Lovell,et al.  The statistical performance of some instantaneous frequency estimators , 1992, IEEE Trans. Signal Process..

[32]  Ioannis Pitas,et al.  Nonlinear processing and analysis of angular signals , 1998, IEEE Trans. Signal Process..

[33]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[34]  Joseph Tabrikian,et al.  Performance bounds for constrained parameter estimation , 2012, 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM).

[35]  Luc Knockaert,et al.  The Barankin bound and threshold behavior in frequency estimation , 1997, IEEE Trans. Signal Process..

[36]  F. Ruymgaart,et al.  A Cramér-Rao type inequality for random variables in Euclidean manifolds , 1992 .

[37]  Eric Chaumette,et al.  New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.

[38]  Eric Chaumette,et al.  Lower bounds on the mean square error derived from mixture of linear and non-linear transformations of the unbiasness definition , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[39]  James Ting-Ho Lo,et al.  Exponential Fourier densities and optimal estimation and detection on the circle , 1977, IEEE Trans. Inf. Theory.

[40]  Dharmendra Lingaiah,et al.  The Estimation and Tracking of Frequency , 2004 .

[41]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[42]  J. Barbot,et al.  Tractable forms of some deterministic MSE lower bounds for biased estimation , 2009, 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis.

[43]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[44]  Eric Chaumette,et al.  A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.

[45]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[46]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[47]  Arye Nehorai,et al.  Vector-sensor array processing for electromagnetic source localization , 1994, IEEE Trans. Signal Process..

[48]  Ruggero Reggiannini,et al.  A fundamental lower bound to the performance of phase estimators over Rician-fading channels , 1997, IEEE Trans. Commun..

[49]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.

[50]  D. G. Chapman,et al.  Minimum Variance Estimation Without Regularity Assumptions , 1951 .

[51]  E. Barankin Locally Best Unbiased Estimates , 1949 .