The Use of a Context-Based Information Retrieval Technique

Abstract : Since users are faced with an ever increasing amount of data, fast and effective retrieval of required information is of vital importance. This aim of this study was to examine whether the results provided by a keyword-based technique would be improved through the use of two Latent Semantic Analysis (LSA) techniques. Participants were required to highlight query terms from within documents; one LSA technique utilized the sentence of the query term, and the other LSA technique utilized the entire document. A baseline technique, in which results were not re-ranked, also was used. Fifty participants were provided with a number of information retrieval questions which involved retrieving the documents that would be useful if writing a hypothetical report on a specified topic. Using a counterbalanced repeated-measures design, participants utilized a customized interface, which retrieved and ranked documents using the three different techniques. Although the re-ranking provided by the LSA techniques ordered the documents in a significantly more efficient manner, no significant differences were found in user performance with regard to accuracy, time taken, or documents accessed using the different techniques. However, individual differences did significantly influence results, most notably with regard to participants' scores on a comprehension test. This study highlights the importance of examining the impact of individual differences in any information retrieval system.

[1]  Brandon Pincombe,et al.  Comparison of Human and Latent Semantic Analysis (LSA) Judgements of Pairwise Document Similarities for a News Corpus , 2004 .

[2]  G Salvendy,et al.  Information visualization; assisting low spatial individuals with information access tasks through the use of visual mediators. , 1995, Ergonomics.

[3]  Alistair Moffat,et al.  Parameter Sensitivity in Rank-Biased Precision , 2008 .

[4]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[5]  Herbert A. Simon,et al.  The Sciences of the Artificial - 3rd Edition , 1981 .

[6]  Susan T. Dumais,et al.  Bringing order to the Web: automatically categorizing search results , 2000, CHI.

[7]  John Hale,et al.  A Statistical Approach to Anaphora Resolution , 1998, VLC@COLING/ACL.

[8]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[9]  C. J. van Rijsbergen,et al.  An Algorithm for Information Structuring and Retrieval , 1971, Comput. J..

[10]  Amanda Spink,et al.  Toward a Theoretical Framework for Information Retrieval (IR) Evaluation in an Information Seeking Context , 1999, MIRA.

[11]  Berthier A. Ribeiro-Neto,et al.  Concept-based interactive query expansion , 2005, CIKM '05.

[12]  Hanna M. Wallach,et al.  Topic modeling: beyond bag-of-words , 2006, ICML.

[13]  Dik Lun Lee,et al.  Document Ranking and the Vector-Space Model , 1997, IEEE Softw..

[14]  Joel L. Fagan,et al.  Automatic Phrase Indexing for Document Retrieval: An Examination of Syntactic and Non-Syntactic Methods , 1987, SIGIR.

[15]  Alistair Moffat,et al.  Rank-biased precision for measurement of retrieval effectiveness , 2008, TOIS.

[16]  Norbert Fuhr,et al.  Probabilistic Models in Information Retrieval , 1992, Comput. J..

[17]  Andrew Dillon,et al.  User analysis in HCI - the historical lessons from individual differences research , 1996, Int. J. Hum. Comput. Stud..

[18]  D. R. Swanson Historical note: information retrieval and the future of an illusion , 1997 .

[19]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[20]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[21]  H. Simon The Sciences of the Artificial, (Third edition) , 1997 .

[22]  Hector Garcia-Molina,et al.  Web Spam Taxonomy , 2005, AIRWeb.

[23]  Yiming Yang,et al.  A re-examination of text categorization methods , 1999, SIGIR '99.

[24]  B. Allen Cognitive Research in Information Science: Implications for Design , 1991 .

[25]  W. Bruce Croft,et al.  Improving the effectiveness of information retrieval with local context analysis , 2000, TOIS.

[26]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[27]  Phillip McMahon,et al.  Page classification : UNCLASSIFIED Page classification : UNCLASSIFIED The Effects of Ionising Radiation on MEMS Silicon Strain , 2006 .

[28]  Robert Krovetz,et al.  Homonymy and Polysemy in Information Retrieval , 1997, ACL.

[29]  Peter Bruza,et al.  Web searching: A process-oriented experimental study of three interactive search paradigms , 2002, J. Assoc. Inf. Sci. Technol..

[30]  Chia-Hui Chang,et al.  Enabling Concept-Based Relevance Feedback for Information Retrieval on the WWW , 1999, IEEE Trans. Knowl. Data Eng..

[31]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[32]  Bryce Allen Individual differences and the conundrums of user-centered design: two experiments , 2000 .

[33]  Louise T. Su Value of Search Results as a Whole as the Best Single Measure of Information Retrieval Performance , 1998, Inf. Process. Manag..

[34]  Ophir Frieder,et al.  Hourly analysis of a very large topically categorized web query log , 2004, SIGIR '04.

[35]  Christopher N. Carlson Information overload, retrieval strategies and Internet user empowerment , 2003 .

[36]  Peter W. Foltz,et al.  An introduction to latent semantic analysis , 1998 .

[37]  Julio Gonzalo,et al.  Indexing with WordNet synsets can improve text retrieval , 1998, WordNet@ACL/COLING.

[38]  W. Bruce Croft,et al.  Lexical ambiguity and information retrieval , 1992, TOIS.

[39]  C. J. van Rijsbergen,et al.  Incorporating user search behavior into relevance feedback , 2003, J. Assoc. Inf. Sci. Technol..

[40]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[41]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[42]  Lin Guo XRANK : Ranked Keyword Search over XML Documents , 2003 .

[43]  Christine L. Borgman,et al.  The user's mental model of an information retrieval system , 1999, SIGIR '85.

[44]  Tao Tao,et al.  A formal study of information retrieval heuristics , 2004, SIGIR '04.

[45]  Karen Sparck Jones Automatic keyword classification for information retrieval , 1971 .

[46]  Gerald Kowalski,et al.  Information Retrieval Systems: Theory and Implementation , 1997 .

[47]  Joemon M. Jose,et al.  A study on the use of summaries and summary-based query expansion for a question-answering task , 2001 .

[48]  Donna K. Harman,et al.  Overview of the Eighth Text REtrieval Conference (TREC-8) , 1999, TREC.

[49]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[50]  Roberto Navigli,et al.  An analysis of ontology-based query expansion strategies , 2003 .

[51]  Bryce Allen,et al.  Cognitive Abilities and Information System Usability , 1994, Inf. Process. Manag..

[52]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[53]  Elizabeth D. Liddy Document Retrieval, Automatic , 2005 .

[54]  George Kingsley Zipf,et al.  Human Behaviour and the Principle of Least Effort: an Introduction to Human Ecology , 2012 .

[55]  Christine L. Borgman The User's Mental Model of an Information Retrieval System: An Experiment on a Prototype Online Catalog , 1986, Int. J. Man Mach. Stud..