Tunneling of an energy eigenstate through a parabolic barrier viewed from Wigner phase space

Abstract We analyze the tunneling of a particle through a repulsive potential resulting from an inverted harmonic oscillator in the quantum mechanical phase space described by the Wigner function. In particular, we solve the partial differential equations in phase space determining the Wigner function of an energy eigenstate of the inverted oscillator. The reflection or transmission coefficients R or T are then given by the total weight of all classical phase-space trajectories corresponding to energies below, or above the top of the barrier given by the Wigner function.

[1]  William H. Miller,et al.  ANALYTIC CONTINUATION OF CLASSICAL MECHANICS FOR CLASSICALLY FORBIDDEN COLLISION PROCESSES. , 1972 .

[2]  S. Massar,et al.  A primer for black hole quantum physics , 1995, 0710.4345.

[3]  Ulf Leonhardt Quantum catastrophe of slow light , 2001 .

[4]  E. Heller,et al.  A semiclassical correlation function approach to barrier tunneling , 1995 .

[5]  Quantum tunneling and the semiclassical real time dynamics of the density matrix , 1999 .

[6]  M. Kleber Exact solutions for time-dependent phenomena in quantum mechanics , 1994 .

[7]  D. McLaughlin Complex Time, Contour Independent Path Integrals, and Barrier Penetration , 1972 .

[8]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[9]  U. Leonhardt A laboratory analogue of the event horizon using slow light in an atomic medium , 2002, Nature.

[10]  H. Krappe Semiclassical descriptions of atomic and nuclear collisions , 1987 .

[11]  G. Barton Quantum mechanics of the inverted oscillator potential , 1986 .

[12]  W. Miller,et al.  Semi-classical correction for quantum-mechanical scattering , 1994 .

[13]  Semiclassical real-time tunneling by multiple spawning of classical trajectories , 2000, Physical review letters.

[14]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[15]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[16]  S. Orszag,et al.  Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. , 1999 .

[17]  J. Marto,et al.  Indefinite oscillators and black‐hole evaporation , 2008, 0812.2848.

[18]  H. S. Allen The Quantum Theory , 1928, Nature.

[19]  Wolfgang P. Schleich,et al.  Quantum optics in phase space , 2001 .

[20]  LETTER TO THE EDITOR: How to calculate the Wigner function from phase space , 1998 .

[21]  M. Razavy,et al.  Quantum Theory of Tunneling , 2003 .

[22]  E. C. Kemble A Contribution to the Theory of the B. W. K. Method , 1935 .

[23]  J. Wheeler,et al.  Quantum effects near a barrier maximum , 1959 .

[24]  N. Balazs,et al.  Wigner's function and tunneling , 1990 .

[25]  John Archibald Wheeler,et al.  NUCLEAR CONSTITUTION AND THE INTERPRETATION OF FISSION PHENOMENA , 1953 .

[26]  P. Zweifel Advanced Mathematical Methods for Scientists and Engineers , 1980 .

[27]  W. Unruh Notes on black-hole evaporation , 1976 .