Frequency-axis light transport and topological effects in dynamic photonic structures

We study the ring resonator under a dynamic modulation. Each ring resonator supports a set of resonant modes with an equal spacing. We find that the system exhibits a spectral Bloch oscillation along the frequency axis when we introduce a frequency detuning in the modulation frequency. A periodic switching of the detuning brings out a unidirectional translation of the frequency of light. Moreover, in an array of rings, each of which is dynamically modulated with a different phase, we see topologically-protected edge states. Our work points to a new capability for the control of light in the frequency space.

[1]  S. Fan,et al.  Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension , 2016, Nature Communications.

[2]  S. Fan,et al.  Time reversal of a wave packet with temporal modulation of gauge potential , 2016 .

[3]  S. Fan,et al.  Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator , 2016 .

[4]  S. Fan,et al.  Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov-Bohm effect. , 2015, Optics letters.

[5]  Shanhui Fan,et al.  Photonic gauge potential in a system with a synthetic frequency dimension. , 2015, Optics letters.

[6]  T. Ozawa,et al.  Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics , 2015, 1510.03910.

[7]  Shanhui Fan,et al.  Using time-dependent effective gauge field for photons to achieve dynamic localization of light , 2015, SPIE NanoScience + Engineering.

[8]  S. Fan,et al.  Topologically nontrivial Floquet band structure in a system undergoing photonic transitions in the ultrastrong-coupling regime , 2015, 1504.07299.

[9]  Shanhui Fan,et al.  Three-Dimensional Dynamic Localization of Light from a Time-Dependent Effective Gauge Field for Photons. , 2015, Physical review letters.

[10]  Jensen Li,et al.  Gauge field optics with anisotropic media. , 2014, Physical review letters.

[11]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[12]  S. Fan,et al.  Light Guiding by Effective Gauge Field for Photons , 2014 .

[13]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[14]  A. Matsko,et al.  Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. , 2014, Physical review letters.

[15]  J Fan,et al.  Topologically robust transport of photons in a synthetic gauge field. , 2014, Physical review letters.

[16]  S. Fan,et al.  Controlling the flow of light using the inhomogeneous effective gauge field that emerges from dynamic modulation. , 2013, Physical review letters.

[17]  S. Fan,et al.  Effective magnetic field for photons based on the magneto-optical effect , 2013 .

[18]  K. Vahala,et al.  Microresonator frequency comb optical clock , 2013, 1309.3525.

[19]  C. Bender,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[20]  M. Lipson,et al.  Microresonator-based comb generation without an external laser source. , 2013, Optics express.

[21]  Gennady Shvets,et al.  Photonic topological insulators. , 2013, Nature materials.

[22]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[23]  Ting Hu,et al.  Tunable Fano resonances based on two-beam interference in microring resonator , 2013 .

[24]  Felix Dreisow,et al.  Photonic Floquet topological insulators , 2012, Nature.

[25]  Michal Lipson,et al.  Broadband parametric frequency comb generation with a 1-μm pump source. , 2012, Optics express.

[26]  Zongfu Yu,et al.  Realizing effective magnetic field for photons by controlling the phase of dynamic modulation , 2012, Nature Photonics.

[27]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[28]  Gennady Shvets,et al.  Photonic topological insulators. , 2012, Nature materials.

[29]  S. Fan,et al.  Microscopic theory of photonic one-way edge mode , 2011 .

[30]  I. Carusotto,et al.  Artificial gauge field for photons in coupled cavity arrays , 2011, 1104.4071.

[31]  Mohammad Hafezi,et al.  Robust optical delay lines with topological protection , 2011, 1102.3256.

[32]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[33]  A. Matsko,et al.  Collective emission and absorption in a linear resonator chain. , 2009, Optics express.

[34]  M. Soljačić,et al.  Reflection-free one-way edge modes in a gyromagnetic photonic crystal. , 2007, Physical review letters.

[35]  Qianfan Xu,et al.  Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[36]  S. Raghu,et al.  Analogs of quantum-Hall-effect edge states in photonic crystals , 2006, cond-mat/0602501.

[37]  S. Longhi Dynamic localization and Bloch oscillations in the spectrum of a frequency mode-locked laser. , 2005, Optics letters.

[38]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2005, Physical review letters.

[39]  S. Murakami,et al.  Hall effect of light. , 2004, Physical review letters.

[40]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[41]  K. Vahala Optical microcavities , 2003, Nature.

[42]  G. V. Chester,et al.  Solid State Physics , 2000 .