Grasping control of a tentacle arm

In this paper, the problem of a class of hyperredundant arms with continuum elements that performs the grasping function by coiling is discussed. This function is often met in the animal world as the elephant's trunk or octopus tentacle. First, the dynamic model in 3D-space is developed. The equations that describe the motion of the arm that carries a load by coiling are inferred. The stability of the motion is discussed. Numerical simulations of the motion toward a imposed target are presented.

[1]  Gregory S. Chirikjian,et al.  Kinematically optimal hyper-redundant manipulator configurations , 1995, IEEE Trans. Robotics Autom..

[2]  J. Bruce C. Davies,et al.  Continuum robots - a state of the art , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  Mircea Ivanescu,et al.  Position dynamic control for a tentacle manipulator , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Nirvana Popescu,et al.  Position and force control of the grasping function for a hyperredundant arm , 2008, 2008 IEEE International Conference on Robotics and Automation.

[5]  Gregory S. Chirikjian,et al.  An obstacle avoidance algorithm for hyper-redundant manipulators , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[6]  Shuzhi Sam Ge,et al.  Energy-based robust controller design for multi-link flexible robots , 1996 .

[7]  Gregory S. Chirikjian,et al.  A general numerical method for hyper-redundant manipulator inverse kinematics , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[8]  Ian A. Gravagne,et al.  Good vibrations: a vibration damping setpoint controller for continuum robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[9]  Shoichi Iikura,et al.  Development of flexible microactuator and its applications to robotic mechanisms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[10]  Hiromi Mochiyama,et al.  The shape Jacobian of a manipulator with hyper degrees of freedom , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[11]  Bruno Siciliano,et al.  Force and position tracking: parallel control with stiffness adaptation , 1998 .

[12]  Hiromi Mochiyama,et al.  Direct kinematics of manipulators with hyper degrees of freedom and Frenet-Serret formula , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[13]  Mircea Ivanescu,et al.  A variable structure controller for a tentacle manipulator , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[14]  Shuzhi Sam Ge,et al.  Energy-based robust controller design for multi-link flexible robots , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[15]  Dan O. Popa,et al.  An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments , 1995, IEEE Trans. Robotics Autom..

[16]  Ian A. Gravagne,et al.  On the kinematics of remotely-actuated continuum robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Ian A. Gravagne,et al.  Uniform regulation of a multi-section continuum manipulator , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).