Design of regular (2,d/sub c/)-LDPC codes over GF(q) using their binary images
暂无分享,去创建一个
[1] Evangelos Eleftheriou,et al. On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).
[2] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[3] D.J.C. MacKay,et al. Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.
[4] D. Mackay,et al. Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).
[5] David Declercq,et al. Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.
[6] John G. Proakis,et al. Digital Communications , 1983 .
[7] Evangelos Eleftheriou,et al. Binary representation of cycle Tanner-graph GF(2/sup b/) codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).
[8] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[9] Nazanin Rahnavard,et al. Nonuniform error correction using low-density parity-check codes , 2005, IEEE Transactions on Information Theory.
[10] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[11] David Declercq,et al. Extended minsum algorithm for decoding LDPC codes over GF(/sub q/ , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[12] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[13] D. Declercq,et al. Fast Decoding Algorithm for LDPC over GF(2q) , 2003 .
[14] David Declercq,et al. Design of non binary LDPC codes using their binary image: algebraic properties , 2006, 2006 IEEE International Symposium on Information Theory.
[15] Emre Telatar,et al. Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.
[16] Evangelos Eleftheriou,et al. Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.
[17] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[18] Matthew C. Davey,et al. Error-Correction using Low Density Parity Check Codes , 1999 .
[19] Richard D. Wesel,et al. Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.
[20] William E. Ryan,et al. Design of quasi-cyclic Tanner codes with low error floors , 2006 .
[21] Daniel A. Spielman,et al. Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[22] Evangelos Eleftheriou,et al. Approximate algorithms for computing the minimum distance of low-density parity-check codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[23] Sae-Young Chung,et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[24] Dariush Divsalar,et al. Protograph based LDPC codes with minimum distance linearly growing with block size , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..