Design of regular (2,d/sub c/)-LDPC codes over GF(q) using their binary images

In this paper, a method to design regular (2, dc)- LDPC codes over GF(q) with both good waterfall and error floor properties is presented, based on the algebraic properties of their binary image. First, the algebraic properties of rows of the parity check matrix H associated with a code are characterized and optimized to improve the waterfall. Then the algebraic properties of cycles and stopping sets associated with the underlying Tanner graph are studied and linked to the global binary minimum distance of the code. Finally, simulations are presented to illustrate the excellent performance of the designed codes.

[1]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[2]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[3]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[4]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[5]  David Declercq,et al.  Decoding Algorithms for Nonbinary LDPC Codes Over GF$(q)$ , 2007, IEEE Transactions on Communications.

[6]  John G. Proakis,et al.  Digital Communications , 1983 .

[7]  Evangelos Eleftheriou,et al.  Binary representation of cycle Tanner-graph GF(2/sup b/) codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[8]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[9]  Nazanin Rahnavard,et al.  Nonuniform error correction using low-density parity-check codes , 2005, IEEE Transactions on Information Theory.

[10]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[11]  David Declercq,et al.  Extended minsum algorithm for decoding LDPC codes over GF(/sub q/ , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[12]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[13]  D. Declercq,et al.  Fast Decoding Algorithm for LDPC over GF(2q) , 2003 .

[14]  David Declercq,et al.  Design of non binary LDPC codes using their binary image: algebraic properties , 2006, 2006 IEEE International Symposium on Information Theory.

[15]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[16]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[17]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[18]  Matthew C. Davey,et al.  Error-Correction using Low Density Parity Check Codes , 1999 .

[19]  Richard D. Wesel,et al.  Selective avoidance of cycles in irregular LDPC code construction , 2004, IEEE Transactions on Communications.

[20]  William E. Ryan,et al.  Design of quasi-cyclic Tanner codes with low error floors , 2006 .

[21]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[22]  Evangelos Eleftheriou,et al.  Approximate algorithms for computing the minimum distance of low-density parity-check codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[23]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[24]  Dariush Divsalar,et al.  Protograph based LDPC codes with minimum distance linearly growing with block size , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..