Parallel velocity and temperature of argon ions in an expanding, helicon source driven plasma

The parallel ion flow in a high-density helicon source plasma expanding into a region of weaker magnetic field is measured as a function of neutral pressure, magnetic field strength, rf power and rf driving frequency. The dependence of the parallel ion flow and parallel ion temperature, measured by laser induced fluorescence, on the plasma density, electron temperature and floating potential, measured with an rf-compensated Langmuir probe, is also examined. At the end of the helicon plasma source, the ion velocity space distribution changes from a single subsonically drifting Maxwellian population to a supersonic ion beam (≈15 eV) plus a cold, subsonically drifting background ion population. At 38 cm into the expansion region beyond the end of the plasma source, the supersonic ion beam is not observed.

[1]  Christine Charles,et al.  Current-free double-layer formation in a high-density helicon discharge , 2003 .

[2]  J. Kline,et al.  Control of ion temperature anisotropy in a helicon plasma , 1998 .

[3]  T. Marshall,et al.  EFFECTS OF PLASMA FLOW ON ELECTROSTATIC DISTURBANCES IN A Q MACHINE. , 1970 .

[4]  R. Boswell,et al.  Fast anisotropic etching of silicon in an inductively coupled plasma reactor , 1989 .

[5]  Hans R. Griem,et al.  Principles of Plasma Spectroscopy: Spectral line broadening , 1997 .

[6]  F. Skiff,et al.  Ion dynamics in nonlinear electrostatic structures , 2001 .

[7]  Stenzel,et al.  Expansion of a two-electron population plasma into vacuum. , 1988, Physical Review Letters.

[8]  T. P. Donaldson,et al.  Fast-ion emission and resonance absorption in laser-generated plasma , 1978 .

[9]  Noah Hershkowitz,et al.  Laboratory double layers , 1979 .

[10]  Stenzel,et al.  Observation of a stationary, current-free double layer in a plasma. , 1990, Physical review letters.

[11]  S. A. Andersen,et al.  Continuous Supersonic Plasma Wind Tunnel , 1969 .

[12]  C. Charles,et al.  Measurement and modeling of ion energy distribution functions in a low pressure argon plasma diffusing from a 13.56 MHz helicon source , 1992 .

[13]  Francis F. Chen,et al.  RF compensated probes for high-density discharges , 1994 .

[14]  J. Kline,et al.  Ion heating and density production in helicon sources near the lower hybrid frequency , 2001 .

[15]  R. Tanberg,et al.  On the Cathode of an Arc Drawn in Vacuum , 1930 .

[16]  E. Scime,et al.  Laser induced fluorescence in Ar and He plasmas with a tunable diode laser , 2003 .

[17]  N. Stone,et al.  A study of plasma expansion phenomena in laboratory generated plasma wakes: preliminary results , 1985, Journal of Plasma Physics.

[18]  M. Zarcone,et al.  Electron distribution functions in laser fields , 2001 .

[19]  Benjamin Alexandrovich,et al.  Electron energy distribution function measurements and plasma parameters in inductively coupled argon plasma , 2002 .

[20]  F. Levinton,et al.  Ion acceleration in plasmas emerging from a helicon-heated magnetic-mirror device , 2003 .

[21]  F. W. Baity,et al.  Experimental Status of the Development of a Variable Specific Impulse Magnetoplasma Rocket , 1999 .

[22]  G. Emmert,et al.  Modeling of plasma flow downstream of an electron cyclotron resonance plasma source , 1990 .

[23]  E. Scime,et al.  Frequency dependent effects in helicon plasmas , 1997 .

[24]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[25]  C. Charles Ion energy distribution functions in a multipole confined argon plasma diffusing from a 13.56‐MHz helicon source , 1993 .

[26]  D. N. Hill,et al.  Single frequency scanning laser as a plasma diagnostic , 1983 .

[27]  N. Stone,et al.  The expansion of a plasma into a vacuum - Basic phenomena and processes and applications to space plasma physics , 1983 .

[28]  R. Boswell,et al.  Progress in Experimental Research of the Vasimr Engine , 2003 .

[29]  J. Kline,et al.  Slow wave ion heating in the HELIX helicon source , 2002 .

[30]  N. Hershkowitz,et al.  Neutral pumping in a helicon discharge , 1998 .

[31]  J. Kline,et al.  High vacuum feedthrough for angular, linear, and rotary motion , 2002 .

[32]  Francis F. Chen,et al.  Plasma ionization by helicon waves , 1991 .

[33]  J. Kline,et al.  Ion temperature anisotropy limitation in high beta plasmas , 2000 .

[34]  R. M. Mayo,et al.  A magnetically-nozzled, quasi-steady, multimegawatt, coaxial plasma thruster , 1994 .

[35]  A. V. Phelps,et al.  Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrals in N2 and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to 10 keV , 1991 .

[36]  R. Schunk,et al.  Numerical simulations of counterstreaming plasmas and their relevance to interhemispheric flows , 1983 .

[37]  C. Charles Hydrogen ion beam generated by a current-free double layer in a helicon plasma , 2004 .

[38]  N. Hershkowitz,et al.  Multiple magnetized double layers in the laboratory , 1993 .

[39]  R. Stenzel,et al.  Particle dynamics and current‐free double layers in an expanding, collisionless, two‐electron‐population plasma , 1991 .

[40]  John L. Kline,et al.  Microwave interferometer for steady-state plasmas , 2001 .

[41]  C. Charles,et al.  Effect of wall charging on an oxygen plasma created in a helicon diffusion reactor used for silica deposition , 1995 .

[42]  C. Charles,et al.  A supersonic ion beam generated by a current-free helicon double-layer , 2003 .

[43]  R. Stern,et al.  Plasma Ion Diagnostics Using Resonant Fluorescence , 1975 .

[44]  R. Gottscho,et al.  Spatially resolved ion velocity distributions in a diverging field electron cyclotron resonance plasma reactor , 1990 .

[45]  E. Kobel,et al.  Pressure and High Velocity Vapour Jets at Cathodes of a Mercury Vacuum Arc , 1930 .

[46]  J. D. Evans,et al.  Plasma injection with helicon sources , 2000 .