Semi-empirical modeling of fuselage–rotor interference for comprehensive codes: influence of angle of attack

The flow field around the isolated Bo105 fuselage including the tail boom and empennage is computed by an unsteady panel code. Velocities normal to the rotor rotational plane are extracted in a volume around the rotor as a data base. A simple semi-empirical analytical formulation of the fuselage-induced velocities, based on parameter estimation from the panel code data, is extended to include rotor shaft angles of attack from $$\alpha =-90^{\circ }$$α=-90∘ (hover, vertical climb) to +90° (vertical descent) for use in comprehensive rotor codes. This model allows the computation of fuselage–rotor interferences on the rotor blade element level in a simplified form, thus eliminating the need for costly CFD computation (of this effect). It also allows the prediction of the rotor wake geometry deformation due to the presence of the fuselage in both prescribed wake and free-wake codes. Its impact on rotor thrust, power and trim is estimated analytically using blade element momentum theory.

[1]  H. Huber,et al.  Studies on Blade‐to‐Blade and Rotor‐Fuselage‐Tail Interferences , 1983 .

[2]  Todd R. Quackenbush,et al.  Rotorcraft Interactional Aerodynamics with Fast Vortex/Fast Panel Methods , 2003 .

[3]  E Richard,et al.  Fuselage and Tail-Rotor Interference Effects on Helicopter Wake Development in Descending Flight , 2004 .

[4]  Charles N. Keys,et al.  Guidelines for Reducing Helicopter Parasite Drag , 1975 .

[5]  Berend G. van der Wall,et al.  REPRESENTATIVE TEST RESULTS FROM HELINOVI AEROACOUSTIC MAIN ROTOR/TAIL ROTOR/FUSELAGE TEST IN DNW , 2005 .

[6]  Andrea,et al.  Development of a Multi-Processor Unstructured Panel Code Coupled with a CVC Free Wake Model for Advanced Analyses of Rotorcrafts and Tiltrotors , 2008 .

[7]  Richard E. Brown,et al.  Efficient High-Resolution Wake Modeling Using the Vorticity Transport Equation , 2004 .

[8]  Daniel A. Wachspress,et al.  Application of a Real Time Free Wake Induced Velocity Model in a Naval Rotorcraft Flight Trainer , 2011 .

[9]  Berend G. van der Wall,et al.  A Comprehensive Rotary-Wing Data Base for Code Validation: The HART II International Workshop , 2011 .

[10]  Hyo Won Kim,et al.  Interactional aerodynamics and acoustics of a propeller-augmented compound coaxial helicopter , 2008 .

[11]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[12]  Heinrich G. Jacob,et al.  Rechnergestützte Optimierung statischer und dynamischer Systeme , 1982 .

[13]  Eustis.,et al.  Interactional Aerodynamics--A New Challenge In Helicopter Technology , 1980 .

[14]  Berend G. van der Wall,et al.  Semi-empirical modeling of fuselage–rotor interference for comprehensive codes: the fundamental model , 2014 .

[15]  Marilyn J. Smith,et al.  Unsteady Reynolds-Averaged Navier-Stokes-Based Hybrid Methodologies for Rotor-Fuselage Interaction , 2012 .

[16]  Mark E. Dreier,et al.  Introduction to Helicopter and Tiltrotor Flight Simulation , 2014 .