Validation of Preliminary Results of Thermal Tropopause Derived from FY-3C GNOS Data

The state-of-art global navigation satellite system (GNSS) occultation sounder (GNOS) onboard the FengYun 3 series C satellite (FY-3C) has been in operation for more than five years. The accumulation of FY-3C GNOS atmospheric data makes it ready to be used in atmosphere and climate research fields. This work first introduces FY-3C GNOS into tropopause research and gives the error evaluation results of long-term FY-3C atmosphere profiles. We compare FY-3C results with Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) and radiosonde results and also present the FY-3C global seasonal tropopause patterns. The mean temperature deviation between FY-3C GNOS temperature profiles and COSMIC temperature profiles from January 2014 to December 2017 is globally less than 0.2 K, and the bias of tropopause height (TPH) and tropopause temperature (TPT) annual cycle derived from both collocated pairs are about 80–100 m and 1–2 K, respectively. Also, the correlation coefficients between FY-3C GNOS tropopause parameters and each radiosonde counterpart are generally larger than 0.9 and the corresponding regression coefficients are close to 1. Multiple climate phenomena shown in seasonal patterns coincide with results of other relevant studies. Our results demonstrate the long-term stability of FY-3C GNOS atmosphere profiles and utility of FY-3C GNOS data in the climate research field.

[1]  Seok-Woo Son,et al.  The Fine-Scale Structure of the Global Tropopause Derived from COSMIC GPS Radio Occultation Measurements , 2011 .

[2]  Fei Wu,et al.  Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses , 2000 .

[3]  Holger Vömel,et al.  Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer‐Dobson circulation , 2006 .

[4]  Jens Wickert,et al.  GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters , 2005 .

[5]  Jens Wickert,et al.  Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures , 2010 .

[6]  Theodore G. Shepherd,et al.  The tropopause inversion layer in models and analyses , 2006 .

[7]  Günther Zängl,et al.  The Tropopause in the Polar Regions , 2001 .

[8]  Eric DeWeaver,et al.  Tropopause height and zonal wind response to global warming in the IPCC scenario integrations , 2007 .

[9]  Robert Sausen,et al.  Use of Changes in Tropopause Height to Detect Human Influences on Climate , 2003 .

[10]  Yuei-An Liou,et al.  Characteristics of the global thermal tropopause derived from multiple radio occultation measurements , 2017 .

[11]  Barbara Scherllin-Pirscher,et al.  The power of vertical geolocation of atmospheric profiles from GNSS radio occultation , 2017, Journal of geophysical research. Atmospheres : JGR.

[12]  G. Sturaro A closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite data , 2003 .

[13]  Jens Wickert,et al.  Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP , 2004 .

[14]  Fei Wu,et al.  Thermal variability of the tropical tropopause region derived from GPS/MET observations , 2003 .

[15]  Fei Wu,et al.  Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures , 2004 .

[16]  R. Sausen,et al.  Response to Comment on "Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes" , 2004, Science.

[17]  J. Holton,et al.  Stratosphere‐troposphere exchange , 1995 .

[18]  Jens Wickert,et al.  Global tropopause height trends estimated from GPS radio occultation data , 2008 .

[19]  A. Sterl,et al.  On the (In)Homogeneity of Reanalysis Products , 2004 .

[20]  Guanglin Yang,et al.  The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications , 2018, Atmospheric Measurement Techniques.

[21]  Seok-Woo Son,et al.  Tropical Cold-Point Tropopause: Climatology, Seasonal Cycle, and Intraseasonal Variability Derived from COSMIC GPS Radio Occultation Measurements , 2012 .

[22]  Gottfried Kirchengast,et al.  Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013 , 2014 .

[23]  Barbara Scherllin-Pirscher,et al.  Characteristics of tropopause parameters as observed with GPS radio occultation , 2014 .

[24]  Wolfgang Steinbrecht,et al.  Correlations between tropopause height and total ozone: Implications for long‐term changes , 1998 .

[25]  Yoshihiro Tomikawa,et al.  Characteristics of Tropopause and Tropopause Inversion Layer in the Polar Region , 2009 .

[26]  Huw Lewis A robust method for tropopause altitude identification using GPS radio occultation data , 2009 .

[27]  Di Wu,et al.  GNOS — Radio occultation sounder on board of Chinese FY3 satellites , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[28]  Brian J. Hoskins,et al.  The tropical tropopause , 1998 .

[29]  Gottfried Kirchengast,et al.  Characterization of thermal structure and conditions for overshooting of tropical and extratropical cyclones with GPS radio occultation , 2014 .

[30]  Pengfei Zhang,et al.  An introduction to the FY3 GNOS instrument and mountain-top tests , 2014 .

[31]  Christian Rocken,et al.  Seasonal and Longitudinal Variations in the Tropical Tropopause Observed with the GPS Occultation Te , 2000 .

[32]  Liu Congliang,et al.  For the first time fengyun3 C satellite-global navigation satellite system occultation sounder achieved spaceborne Bei Dou system radio occultation , 2015 .

[33]  M. Venkat Ratnam,et al.  Effect of tropical cyclones on the tropical tropopause parameters observed using COSMIC GPS RO data , 2015 .

[34]  P. Mote,et al.  Tropical tropopause layer , 2009 .

[35]  Guanglin Yang,et al.  Evaluation of atmospheric profiles derived from single- and zero-difference excess phase processing of BeiDou radio occultation data from the FY-3C GNOS mission , 2017 .

[36]  Di Wu,et al.  The next generation GNOS instrument for FY-3 meteorological satellites , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).