Machine Learning in Identification of Disease-Associated Microbiota

[1]  B. Calhoun,et al.  Breast tissue, oral and urinary microbiomes in breast cancer , 2017, Oncotarget.

[2]  Sandro Sperandei,et al.  Understanding logistic regression analysis , 2014, Biochemia medica.

[3]  Vasyl Pihur,et al.  RankAggreg, an R package for weighted rank aggregation , 2009, BMC Bioinformatics.

[4]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[5]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[6]  Wei Wang,et al.  MetaPheno: A critical evaluation of deep learning and machine learning in metagenome-based disease prediction. , 2019, Methods.

[7]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[8]  Rob Knight,et al.  Analysis of composition of microbiomes: a novel method for studying microbial composition , 2015, Microbial ecology in health and disease.

[9]  Dan Knights,et al.  Microbiome Learning Repo (ML Repo): A public repository of microbiome regression and classification tasks , 2019, GigaScience.

[10]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[11]  Francesco Asnicar,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[12]  Wes McKinney,et al.  pandas: a Foundational Python Library for Data Analysis and Statistics , 2011 .

[13]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[14]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[15]  Edoardo Pasolli,et al.  Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights , 2016, PLoS Comput. Biol..

[16]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[17]  Jesse R. Zaneveld,et al.  Human-associated microbial signatures: examining their predictive value. , 2011, Cell host & microbe.

[18]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[20]  Stuart E. Dreyfus,et al.  Artificial neural networks, back propagation, and the Kelley-Bryson gradient procedure , 1990 .

[21]  Russell G. Death,et al.  An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data , 2004 .