Collagen fiber orientation in the femoral necks of apes and humans: do their histological structures reflect differences in locomotor loading?

[1]  P Zioupos,et al.  The anisotropic Young's modulus of equine secondary osteones and interstitial bone determined by nanoindentation. , 2001, The Journal of experimental biology.

[2]  K. Kaneda,et al.  Changes in the orientation of collagen fibers on the superficial layer of the mouse tibial bone after denervation: scanning electron microscopic observations. , 1999, Archives of histology and cytology.

[3]  G. Reilly,et al.  The development of microcracking and failure in bone depends on the loading mode to which it is adapted. , 1999, The Journal of experimental biology.

[4]  D B Burr,et al.  Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[5]  K. Rafferty,et al.  Structural design of the femoral neck in primates. , 1998, Journal of human evolution.

[6]  Todd J. Krochta,et al.  Cortical bone distribution in the femoral neck of hominoids: implications for the locomotion of Australopithecus afarensis. , 1997, American journal of physical anthropology.

[7]  V. A. Gibson,et al.  Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. , 1996, Journal of biomechanics.

[8]  G. Marotti The structure of bone tissues and the cellular control of their deposition. , 1996, Italian journal of anatomy and embryology = Archivio italiano di anatomia ed embriologia.

[9]  R. Bloebaum,et al.  Evidence of structural and material adaptation to specific strain features in cortical bone , 1996, The Anatomical record.

[10]  V. A. Gibson,et al.  Osteonal structure in the equine third metacarpus. , 1996, Bone.

[11]  R. Bloebaum,et al.  Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius. , 1995, Bone.

[12]  A. Boyde,et al.  Pattern of collagen fiber orientation in the ovine calcaneal shaft and its relation to locomotor‐induced strain , 1995, The Anatomical record.

[13]  R. Martin,et al.  The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. , 1993, Journal of biomechanics.

[14]  L. Lanyon,et al.  Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius , 1993, Anatomy and Embryology.

[15]  L. Lanyon,et al.  Mechanical implications of collagen fibre orientation in cortical bone of the equine radius , 1993, Anatomy and Embryology.

[16]  R. Pidaparti,et al.  Collagen fiber orientation and geometry effects on the mechanical properties of secondary osteons. , 1992, Journal of biomechanics.

[17]  A Ascenzi,et al.  The micromechanics versus the macromechanics of cortical bone--a comprehensive presentation. , 1988, Journal of biomechanical engineering.

[18]  Lovejoy Co Evolution of Human Walking , 1988 .

[19]  G. Marotti,et al.  A scanning electron microscope study of human bony lamellae. Proposal for a new model of collagen lamellar organization. , 1988, Archivio italiano di anatomia e di embriologia. Italian journal of anatomy and embryology.

[20]  F. Jenkins Chimpanzee Bipedalism: Cineradiographic Analysis and Implications for the Evolution of Gait , 1972, Science.

[21]  A. Ascenzi,et al.  The compressive properties of single osteons , 1968, The Anatomical record.

[22]  A. Ascenzi,et al.  The tensile properties of single osteons , 1967, The Anatomical record.

[23]  H. Elftman,et al.  Chimpanzee and human feet in bipedal walking , 1935 .

[24]  P. Braidotti,et al.  Scanning electron microscopy of collagen fiber orientation in the bone lamellar system in non-decalcified human samples. , 1994, Acta anatomica.

[25]  A. Boyde,et al.  Macroscopic shape of, and lamellar distribution within, the upper limb shafts, allowing inferences about mechanical properties. , 1991, Bone.

[26]  A. Boyde,et al.  The quantitative study of the orientation of collagen in compact bone slices. , 1990, Bone.

[27]  D. Carter,et al.  Relationships between loading history and femoral cancellous bone architecture. , 1989, Journal of biomechanics.

[28]  A Boyde,et al.  Orientation of collagen in human tibial and fibular shaft and possible correlation with mechanical properties. , 1989, Bone.

[29]  R. Martin,et al.  The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. , 1989, Journal of biomechanics.

[30]  A. Boyde,et al.  Collagen orientation in compact bone: II. Distribution of lamellae in the whole of the human femoral shaft with reference to its mechanical properties. , 1984, Metabolic bone disease & related research.

[31]  A. Boyde,et al.  Collagen orientation in compact bone: I. A new method for the determination of the proportion of collagen parallel to the plane of compact bone sections. , 1984, Metabolic bone disease & related research.

[32]  A Ascenzi,et al.  Distribution of osteonic and interstitial components in the human femoral shaft with reference to structure, calcification and mechanical properties. , 1983, Acta anatomica.

[33]  P. Frasca,et al.  Collagen fiber orientations in human secondary osteons. , 1977, Acta anatomica.

[34]  L E Lanyon,et al.  Analysis of surface bone strain in the calcaneus of sheep during normal locomotion. Strain analysis of the calcaneus. , 1973, Journal of biomechanics.

[35]  A. Ascenzi,et al.  THE ULTIMATE TENSILE STRENGTH OF SINGLE OSTEONS. , 1964, Acta anatomica.

[36]  F. G. Evans,et al.  Biomechanical studies of the musculo-skeletal system , 1961 .