Small-grid dithering strategy for improved coronagraphic performance with JWST

Coronagraphic Target Acquisition (TA) is an important factor that contributes to the contrast performance and typically depends on the coronagraph design. In the case of JWST, coronagraphic TAs rely on measuring the centroid of the star's point spread function away from the focal plane mask, and performing a small angle ma- neuver (SAM), to place the star behind the coronagraphic mask. Therefore, the accuracy of the TA is directly limited by the SAM accuracy. Typically JWST coronagraphic observations will include the subtraction of a reference (either a reference star, or a self-reference after a telescope roll). With such differential measurement, the reproducibility of the TA is a very important factor. We propose a novel coronagraphic observation concept whereby the reference PSF is first acquired using a standard TA, followed by coronagraphic observations of a reference star on a small grid of dithered positions. Sub-pixel dithers (5-10 mas each) provide a small reference PSF library that samples the variations in the PSF as a function of position relative to the mask, thus compen- sating for errors in the TA process. This library can be used for PSF subtraction with a variety of algorithms (e.g; LOCI or KLIP algorithms, Lafrenière et al. 2007; Soummer, Pueyo and Larkin 2012). These sub-pixel dithers are executed under closed-loop fine guidance, unlike a standard SAM that executes the maneuver in coarse point mode, which can result in a temporary target offset of 1 arcsecond and would bring the star out from behind the coronagraphic mask. We discuss and evaluate the performance gains from this observation scenario compared to the standard TA both for MIRI coronagraphs.

[1]  David Lafreniere,et al.  HST/NICMOS DETECTION OF HR 8799 b IN 1998 , 2009, 0902.3247.

[2]  R. Soummer,et al.  ORBITAL MOTION OF HR 8799 b, c, d USING HUBBLE SPACE TELESCOPE DATA FROM 1998: CONSTRAINTS ON INCLINATION, ECCENTRICITY, AND STABILITY , 2011, 1110.1382.

[3]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[4]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[5]  Rene Doyon,et al.  Imaging Young Giant Planets From Ground and Space , 2010, 1001.0351.

[6]  Jennifer E. Roberts,et al.  APPLICATION OF A DAMPED LOCALLY OPTIMIZED COMBINATION OF IMAGES METHOD TO THE SPECTRAL CHARACTERIZATION OF FAINT COMPANIONS USING AN INTEGRAL FIELD SPECTROGRAPH , 2011, 1111.6102.

[7]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[8]  R. Soummer,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. III. QUASI-ACHROMATIC SOLUTIONS , 2011 .

[9]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[10]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[11]  W. Traub,et al.  A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets , 2002, astro-ph/0203455.

[12]  R. Soummer Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures , 2004, astro-ph/0412221.

[13]  Marcia J. Rieke The JWST-NIRCam View of Galaxy Evolution , 2011 .

[14]  Marcia J. Rieke,et al.  Hunting planets and observing disks with the JWST NIRCam coronagraph , 2007, SPIE Optical Engineering + Applications.

[15]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[16]  A. Boccaletti,et al.  Imaging exoplanets with the coronagraph of JWST/MIRI , 2005 .

[17]  Mamadou N'Diaye,et al.  FIVE DEBRIS DISKS NEWLY REVEALED IN SCATTERED LIGHT FROM THE HUBBLE SPACE TELESCOPE NICMOS ARCHIVE , 2014, 1404.5614.

[18]  Adam Amara,et al.  PYNPOINT: An image processing package for finding exoplanets , 2012, 1207.6637.

[19]  A. Glasse,et al.  Progress with the design and development of MIRI, the mid-IR instrument for JWST , 2010, Astronomical Telescopes + Instrumentation.

[20]  Etienne Artigau,et al.  A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging , 2007, astro-ph/0702697.

[21]  Andrew Serio,et al.  The Gemini Planet Imager: First Light , 2014, 1403.7520.

[22]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[23]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[24]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[25]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[26]  A. Sivaramakrishnan,et al.  Ground-based Coronagraphy with High-order Adaptive Optics , 2000, Astronomical Telescopes and Instrumentation.

[27]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[28]  T. Fusco,et al.  A probable giant planet imaged in the beta Pictoris disk. VLT/NaCo deep L'-band imaging , 2008, 0811.3583.

[29]  Ben R. Oppenheimer,et al.  High-Contrast Observations in Optical and Infrared Astronomy , 2009 .

[30]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[31]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[32]  Pierre Baudoz,et al.  Target Acquisition for MIRI Coronagraphs , 2008 .

[33]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[34]  Shane Jacobson,et al.  HiCIAO: the Subaru Telescope's new high-contrast coronographic imager for adaptive optics , 2008, Astronomical Telescopes + Instrumentation.

[35]  Jr.,et al.  RECONNAISSANCE OF THE HR 8799 EXOSOLAR SYSTEM. I. NEAR-INFRARED SPECTROSCOPY , 2013, 1303.2627.

[36]  Jean-Pierre Véran,et al.  Exoplanet imaging with LOCI processing: photometry and astrometry with the new SOSIE pipeline , 2010, Astronomical Telescopes + Instrumentation.