A Geometry-Driven Optical Flow Warping for Spatial Normalization of Cortical Surfaces

Spatial normalization is frequently used to map data to a standard coordinate system by removing intersubject morphological differences, thereby allowing for group analysis to be carried out. The work presented in this paper is motivated by the need for an automated cortical surface normalization technique that will automatically identify homologous cortical landmarks and map them to the same coordinates on a standard manifold. The geometry of a cortical surface is analyzed using two shape measures that distinguish the sulcal and gyral regions in a multiscale framework. A multichannel optical flow warping procedure aligns these shape measures between a reference brain and a subject brain, creating the desired normalization. The partial differential equation that carries out the warping is implemented in a Euclidean framework in order to facilitate a multiresolution strategy, thereby permitting large deformations between the two surfaces. The technique is demonstrated by aligning 33 normal cortical surfaces and showing both improved structural alignment in manually labeled sulci and improved functional alignment in positron emission tomography data mapped to the surfaces. A quantitative comparison between our proposed surface-based spatial normalization method and a leading volumetric spatial normalization method is included to show that the surface-based spatial normalization performs better in matching homologous cortical anatomies.

[1]  James H. White A global invariant of conformal mappings in space , 1973 .

[2]  Eric L. Schwartz,et al.  A Numerical Solution to the Generalized Mapmaker's Problem: Flattening Nonconvex Polyhedral Surfaces , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[4]  W. Welker Why Does Cerebral Cortex Fissure and Fold , 1990 .

[5]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[6]  R. Leahy,et al.  Computation of 3-D velocity fields from 3-D cine CT images of a human heart. , 1991, IEEE transactions on medical imaging.

[7]  J C Mazziotta,et al.  Region of Interest Issues: The Relationship between Structure and Function in the Brain , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[9]  K. Zilles,et al.  Brain atlases - a new research tool , 1994, Trends in Neurosciences.

[10]  Alan C. Evans,et al.  An MRI-Based Probabilistic Atlas of Neuroanatomy , 1994 .

[11]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[12]  D D Blatter,et al.  Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. , 1995, AJNR. American journal of neuroradiology.

[13]  Russell H. Taylor,et al.  Computer-Integrated Surgery: Technology and Clinical Applications , 1995 .

[14]  Stacia R. Engel,et al.  Creating images of the flattened cortical sheet , 1996 .

[15]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[16]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[17]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[18]  A. Dale,et al.  A surface-based coordinate system for a canonical cortex , 1996, NeuroImage.

[19]  Guy Marchal,et al.  Multi-modality image registration by maximization of mutual information , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.

[20]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[21]  David Metcalf,et al.  A Digital Brain Atlas for Surgical Planning, Model-Driven Segmentation, and Teaching , 1996, IEEE Trans. Vis. Comput. Graph..

[22]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[23]  D. V. van Essen,et al.  Structural and Functional Analyses of Human Cerebral Cortex Using a Surface-Based Atlas , 1997, The Journal of Neuroscience.

[24]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[25]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[26]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[27]  Alan C. Evans,et al.  3D Anatomical Atlas of the Human Brain , 1998, NeuroImage.

[28]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Resnick,et al.  An image-processing system for qualitative and quantitative volumetric analysis of brain images. , 1998, Journal of computer assisted tomography.

[30]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[31]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[32]  Karl Rohr,et al.  Approximating Thin-Plate Splines for Elastic Registration: Integration of Landmark Errors and Orientation Attributes , 1999, IPMI.

[33]  Alan C. Evans,et al.  Animal: Automatic Nonlinear Image Matching and Anatomical Labeling , 1999 .

[34]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[35]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[36]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[37]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[38]  R. Woods,et al.  Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain , 2000, Human brain mapping.

[39]  J. Beatty The Human Brain: Essentials of Behavioral Neuroscience , 2000 .

[40]  Arthur W. Toga,et al.  Brain Image Analysis and Atlas Construction , 2000 .

[41]  Philip L. Bowers,et al.  Coordinate systems for conformal cerebellar flat maps , 2000, NeuroImage.

[42]  S. Resnick,et al.  One-year age changes in MRI brain volumes in older adults. , 2000, Cerebral cortex.

[43]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[44]  Richard M. Leahy,et al.  Optimization method for creating semi-isometric flat maps of the cerebral cortex , 2000, Medical Imaging: Image Processing.

[45]  Jerry L Prince,et al.  Improving cortical surface reconstruction accuracy usingan anatomatically consistent gray matter representation , 2000, NeuroImage.

[46]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[47]  Pierre Hellier,et al.  Hierarchical estimation of a dense deformation field for 3-D robust registration , 2001, IEEE Transactions on Medical Imaging.

[48]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  Dzung L. Pham,et al.  Robust fuzzy segmentation of magnetic resonance images , 2001, Proceedings 14th IEEE Symposium on Computer-Based Medical Systems. CBMS 2001.

[50]  Jerry L. Prince,et al.  Hemispherical map for the human brain cortex , 2001, SPIE Medical Imaging.

[51]  C. Garel,et al.  Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. , 2001, AJNR. American journal of neuroradiology.

[52]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[53]  Xiao Han,et al.  Automatic segmentation editing for cortical surface reconstruction , 2001, SPIE Medical Imaging.

[54]  P. Fox,et al.  Mapping context and content: the BrainMap model , 2002, Nature Reviews Neuroscience.

[55]  Jerry L Prince,et al.  Automated Sulcal Segmentation Using Watersheds on the Cortical Surface , 2002, NeuroImage.

[56]  Jerry L. Prince,et al.  Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm , 2002, IEEE Transactions on Medical Imaging.

[57]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[58]  Gary E. Christensen,et al.  Consistent landmark and intensity-based image registration , 2002, IEEE Transactions on Medical Imaging.

[59]  Jan G. Bjaalie,et al.  Localization in the brain: new solutions emerging , 2002, Nature Reviews Neuroscience.

[60]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[61]  M. Jenkinson,et al.  In vivo identification of human cortical areas using high-resolution MRI: An approach to cerebral structure–function correlation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Pierre Hellier,et al.  Coupling dense and landmark-based approaches for nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[63]  Jerry L. Prince,et al.  Mapping Techniques for Aligning Sulci across Multiple Brains , 2003, MICCAI.

[64]  Alejandro F. Frangi,et al.  Automatic Construction of 3D Statistical Deformation Models of the Brain using Non-Rigid Registration , 2003, IEEE Trans. Medical Imaging.

[65]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[66]  Xiao Han,et al.  CRUISE: Cortical reconstruction using implicit surface evolution , 2004, NeuroImage.

[67]  Olivier D. Faugeras,et al.  Area Preserving Cortex Unfolding , 2004, MICCAI.

[68]  David A. Rottenberg,et al.  Cortical surface flattening using least square conformal mapping with minimal metric distortion , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[69]  Rex E. Jung,et al.  Structural brain variation and general intelligence , 2004, NeuroImage.

[70]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[71]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[72]  S. Resnick,et al.  Brain activation during encoding and recognition of verbal and figural information in older adults , 2005, Neurobiology of Aging.

[73]  Sarang Joshi,et al.  Large deformation three-dimensional image registration in image-guided radiation therapy , 2005, Physics in medicine and biology.

[74]  Lok Ming Lui,et al.  Optimization of Brain Conformal Mapping with Landmarks , 2005, MICCAI.

[75]  Jeremy D. Schmahmann,et al.  MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability , 2005, NeuroImage.

[76]  Jerry L. Prince,et al.  Cortical reconstruction using implicit surface evolution: Accuracy and precision analysis , 2006, NeuroImage.

[77]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[78]  W. Welker,et al.  Why Does Cerebral Cortex Fissure and Fold ? A Review of Determinants of Gyri and Sulci , 2022 .

[79]  Junaed Sattar Snakes , Shapes and Gradient Vector Flow , 2022 .