Role of brain aldosterone and mineralocorticoid receptors in aldosterone-salt hypertension in rats

[1]  T. Lohmeier,et al.  Global- and Renal-Specific Sympathoinhibition in Aldosterone Hypertension , 2015, Hypertension.

[2]  F. Leenen,et al.  Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats , 2014, The Journal of physiology.

[3]  F. Leenen Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. , 2014, American journal of hypertension.

[4]  L. M. Flanagan-Cato,et al.  The Role of the Hypothalamic Paraventricular Nucleus and the Organum Vasculosum Lateral Terminalis in the Control of Sodium Appetite in Male Rats , 2014, The Journal of Neuroscience.

[5]  J. Grobe,et al.  Neuron-Specific (Pro)renin Receptor Knockout Prevents the Development of Salt-Sensitive Hypertension , 2014, Hypertension.

[6]  L. Salkoff,et al.  ENaC-expressing neurons in the sensory circumventricular organs become c-Fos activated following systemic sodium changes. , 2013, American journal of physiology. Regulatory, integrative and comparative physiology.

[7]  F. Leenen,et al.  Role of Brain Corticosterone and Aldosterone in Central Angiotensin II–Induced Hypertension , 2013, Hypertension.

[8]  F. Leenen,et al.  Role of angiotensin II type 1 receptors in the subfornical organ in the pressor responses to central sodium in rats , 2013, Brain Research.

[9]  A. Johnson,et al.  Subfornical Organ Mediates Sympathetic and Hemodynamic Responses to Blood-Borne Proinflammatory Cytokines , 2013, Hypertension.

[10]  Y. Nishida,et al.  Aldosterone is synthesized in and activates bulbospinal neurons through mineralocorticoid receptors and ENaCs in the RVLM , 2013, Hypertension Research.

[11]  P. May,et al.  Expression of Mineralocorticoid and Glucocorticoid receptors in Pre‐autonomic Neurons of the Rat Paraventricular Nucleus , 2013, American journal of physiology. Regulatory, integrative and comparative physiology.

[12]  A. Mark,et al.  Angiotensin Type 1a Receptors in the Subfornical Organ Are Required for Deoxycorticosterone Acetate-Salt Hypertension , 2013, Hypertension.

[13]  B. Xue,et al.  Aldosterone Acting Through the Central Nervous System Sensitizes Angiotensin II-Induced Hypertension , 2012, Hypertension.

[14]  J. V. Van Huysse,et al.  Salt-Induced Hypertension in a Mouse Model of Liddle Syndrome Is Mediated by Epithelial Sodium Channels in the Brain , 2012, Hypertension.

[15]  B. Adams-Huet,et al.  Spironolactone Prevents Chlorthalidone-Induced Sympathetic Activation and Insulin Resistance in Hypertensive Patients , 2012, Hypertension.

[16]  W. Armstrong,et al.  Epithelial Na⁺ sodium channels in magnocellular cells of the rat supraoptic and paraventricular nuclei. , 2012, American journal of physiology. Endocrinology and metabolism.

[17]  Hong Zheng,et al.  Regulation of hypothalamic renin–angiotensin system and oxidative stress by aldosterone , 2011, Experimental physiology.

[18]  Y. Komiyama,et al.  An ouabain-like factor is secreted from immortalized hypothalamic cells in an aldosterone-dependent manner , 2011, Neurochemistry International.

[19]  C. Gomez-Sanchez,et al.  Central interactions of aldosterone and angiotensin II in aldosterone- and angiotensin II-induced hypertension. , 2011, American journal of physiology. Heart and circulatory physiology.

[20]  F. Leenen,et al.  Central neuronal activation and pressor responses induced by circulating ANG II: role of the brain aldosterone-"ouabain" pathway. , 2010, American journal of physiology. Heart and circulatory physiology.

[21]  F. Leenen,et al.  Effects of central sodium on epithelial sodium channels in rat brain. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[22]  F. Leenen,et al.  The brain renin-angiotensin-aldosterone system: A major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction , 2009, Current heart failure reports.

[23]  F. Leenen,et al.  Role of central nervous system aldosterone synthase and mineralocorticoid receptors in salt-induced hypertension in Dahl salt-sensitive rats. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[24]  A. Gabor,et al.  Mechanisms in the PVN mediating local and central sodium-induced hypertension in Wistar rats. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[25]  Yu-Ming Kang,et al.  Aldosterone acts centrally to increase brain renin-angiotensin system activity and oxidative stress in normal rats. , 2008, American journal of physiology. Heart and circulatory physiology.

[26]  D. Pearce,et al.  Salt, sodium channels, and SGK1. , 2007, The Journal of clinical investigation.

[27]  J. Osborn,et al.  Effect of subfornical organ lesion on the development of mineralocorticoid-salt hypertension , 2006, Brain Research.

[28]  A. Johnson,et al.  11&bgr;-Hydroxysteroid Dehydrogenase Type 2 Activity in Hypothalamic Paraventricular Nucleus Modulates Sympathetic Excitation , 2006, Hypertension.

[29]  K. Weber,et al.  P-Glycoprotein Modulates Aldosterone Plasma Disposition and Tissue Uptake , 2006, Journal of cardiovascular pharmacology.

[30]  S. Kalra,et al.  AAV-mediated leptin receptor installation improves energy balance and the reproductive status of obese female Koletsky rats , 2005, Peptides.

[31]  F. Leenen,et al.  Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[32]  C. Gomez-Sanchez,et al.  Is aldosterone synthesized within the rat brain? , 2005, American journal of physiology. Endocrinology and metabolism.

[33]  F. Leenen,et al.  Brain sodium channels and ouabainlike compounds mediate central aldosterone-induced hypertension. , 2003, American journal of physiology. Heart and circulatory physiology.

[34]  K. Rahmouni,et al.  Effects of brain mineralocorticoid receptor blockade on blood pressure and renal functions in DOCA-salt hypertension. , 2002, European journal of pharmacology.

[35]  David Pearce,et al.  Phosphorylation of Nedd4‐2 by Sgk1 regulates epithelial Na+ channel cell surface expression , 2001, The EMBO journal.

[36]  F. Leenen,et al.  Effects of centrally administered losartan on deoxycorticosterone-salt hypertension rats. , 2001, Journal of Korean medical science.

[37]  M. Jurzak,et al.  Characterization of ionic currents of cells of the subfornical organ that project to the supraoptic nuclei , 1999, Brain Research.

[38]  M. Palkovits,et al.  Distribution of angiotensin type-1 receptor messenger RNA expression in the adult rat brain , 1997, Neuroscience.

[39]  J. Funder,et al.  Exclusion of corticosterone from epithelial mineralocorticoid receptors is insufficient for selectivity of aldosterone action: in vivo binding studies. , 1996, Endocrinology.

[40]  E. Stricker,et al.  Central inhibition of salt appetite by oxytocin in rats , 1996, Regulatory Peptides.

[41]  J. Saavedra,et al.  Expression of AT1A and AT1B angiotensin II receptor messenger RNA in forebrain of 2-wk-old rats. , 1996, The American journal of physiology.

[42]  L. Stubley,et al.  Hypothalamic angiotensin release in response to all or glutamic acid stimulation of the SFO in rats , 1993, Brain Research Bulletin.

[43]  M. Brody,et al.  Role of central mineralocorticoid binding sites in development of hypertension. , 1990, The American journal of physiology.

[44]  C. Gomez-Sanchez,et al.  Intracerebroventricular infusion of RU28318 blocks aldosterone-salt hypertension. , 1990, The American journal of physiology.

[45]  D. Ganten,et al.  An Ultrastructural Analysis of the Distribution of Angiotensin II in the Rat Brain , 1989, Journal of neuroendocrinology.

[46]  P. Doris Plasma angiotensin II: Interdependence on sodium and calcium homeostasis , 1988, Peptides.

[47]  R. Caldwell,et al.  Effect of AV3V lesions on development of DOCA-salt hypertension and vascular Na+-pump activity. , 1982, Hypertension.

[48]  M. Brody,et al.  Vasopressin-central nervous system interactions in the development of DOCA hypertension , 1982 .

[49]  W. Pardridge,et al.  Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. , 1979, The Journal of clinical investigation.

[50]  J. Reid,et al.  Central and Peripheral Adrenergic Mechanisms in the Development of Deoxycorticosterone‐Saline Hypertension in Rats , 1975, Circulation research.

[51]  L. Iversen,et al.  REGIONAL STUDIES OF CATECHOLAMINES IN THE RAT BRAIN‐I , 1966, Journal of neurochemistry.

[52]  J. Collister,et al.  Neural, Hormonal and Renal Interactions in Long-Term Blood Pressure Control CHRONIC EFFECTS OF ANGIOTENSIN II AND AT 1 RECEPTOR ANTAGONISTS IN SUBFORNICAL ORGAN-LESIONED RATS , 2005 .

[53]  G. Toney,et al.  Angiotensin II excites paraventricular nucleus neurons that innervate the rostral ventrolateral medulla: an in vitro patch-clamp study in brain slices. , 2005, Journal of neurophysiology.