Metabolism of halophilic archaea

[1]  F Pfeiffer,et al.  Evolution in the laboratory: the genome of Halobacterium salinarum strain R1 compared to that of strain NRC-1. , 2008, Genomics.

[2]  Orland R. Gonzalez,et al.  Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism. , 2008, Molecular bioSystems.

[3]  Robert H. White,et al.  Characterization of an Fe(2+)-dependent archaeal-specific GTP cyclohydrolase, MptA, from Methanocaldococcus jannaschii. , 2007, Biochemistry.

[4]  B. Palfey,et al.  Characterization of a Novel Bifunctional Dihydropteroate Synthase/Dihydropteroate Reductase Enzyme from Helicobacter pylori , 2007, Journal of bacteriology.

[5]  H. Atomi,et al.  Archaeal Type III RuBisCOs Function in a Pathway for AMP Metabolism , 2007, Science.

[6]  D. Söll,et al.  Biosynthesis of Phosphoserine in the Methanococcales , 2006, Journal of bacteriology.

[7]  Manal A. Swairjo,et al.  Discovery of a New Prokaryotic Type I GTP Cyclohydrolase Family* , 2006, Journal of Biological Chemistry.

[8]  Robert H. White,et al.  Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p‐aminobenzoic acid in the archaeon Methanococcus maripaludis , 2006, Molecular microbiology.

[9]  Robert H. White,et al.  Methylglyoxal is an intermediate in the biosynthesis of 6-deoxy-5-ketofructose-1-phosphate: a precursor for aromatic amino acid biosynthesis in Methanocaldococcus jannaschii. , 2006, Biochemistry.

[10]  Ilka U. Heinemann,et al.  Heme Biosynthesis in Methanosarcina barkeri via a Pathway Involving Two Methylation Reactions , 2006, Journal of bacteriology.

[11]  L. Hederstedt,et al.  Compact archaeal variant of heme A synthase , 2006, FEBS letters.

[12]  T. Fukui,et al.  Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden‐Meyerhof pathway in Thermococcus kodakarensis , 2006, Molecular microbiology.

[13]  Friedhelm Pfeiffer,et al.  The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity , 2006, BMC Genomics.

[14]  Haruyuki Atomi,et al.  The Ribulose Monophosphate Pathway Substitutes for the Missing Pentose Phosphate Pathway in the Archaeon Thermococcus kodakaraensis , 2006, Journal of bacteriology.

[15]  Robert H. White,et al.  Methanocaldococcus jannaschii Uses a Modified Mevalonate Pathway for Biosynthesis of Isopentenyl Diphosphate , 2006, Journal of bacteriology.

[16]  Robert H. White,et al.  Identification of Lactaldehyde Dehydrogenase in Methanocaldococcus jannaschii and Its Involvement in Production of Lactate for F420 Biosynthesis , 2006, Journal of bacteriology.

[17]  J. Escalante‐Semerena,et al.  The cobZ Gene of Methanosarcina mazei Gö1 Encodes the Nonorthologous Replacement of the α-Ribazole-5′-Phosphate Phosphatase (CobC) Enzyme of Salmonella enterica , 2006, Journal of bacteriology.

[18]  J. Roth,et al.  Sinorhizobium meliloti bluB is necessary for production of 5,6-dimethylbenzimidazole, the lower ligand of B12. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Turksen,et al.  Isolation and characterization , 2006 .

[20]  A. Oren,et al.  Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds , 2006, Extremophiles.

[21]  F. Tomita,et al.  ISOLATION AND CHARACTERIZATION OF FLAVONOID COMPOUND FROM FERONIA LIMONIA , 2015 .

[22]  Robert H. White,et al.  Ribose-5-Phosphate Biosynthesis in Methanocaldococcus jannaschii Occurs in the Absence of a Pentose-Phosphate Pathway , 2005, Journal of bacteriology.

[23]  Friedhelm Pfeiffer,et al.  Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. , 2005, Genome research.

[24]  N. Amrhein,et al.  On the Two Components of Pyridoxal 5′-Phosphate Synthase from Bacillus subtilis* , 2005, Journal of Biological Chemistry.

[25]  Thijs J. G. Ettema,et al.  The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. , 2005, The Biochemical journal.

[26]  T. Soderberg Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes. , 2005, Archaea.

[27]  Sun Bok Lee,et al.  Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway. , 2005, The Biochemical journal.

[28]  Robert H. White,et al.  A Methanocaldococcus jannaschii Archaeal Signature Gene Encodes for a 5-Formaminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-Monophosphate Synthetase , 2005, Journal of Biological Chemistry.

[29]  J. Yates,et al.  RNA-Dependent Cysteine Biosynthesis in Archaea , 2005, Science.

[30]  Robert H. White,et al.  Identification and characterization of a L-tyrosine decarboxylase in Methanocaldococcus jannaschii. , 2005, Biochimica et biophysica acta.

[31]  Zhu Chang-che On Unique Features , 2005 .

[32]  M. Giladi,et al.  An alternative pathway for reduced folate biosynthesis in bacteria and halophilic archaea , 2004, Molecular microbiology.

[33]  D. Hough,et al.  Discovery of the catalytic function of a putative 2‐oxoacid dehydrogenase multienzyme complex in the thermophilic archaeon Thermoplasma acidophilum , 2004, FEBS letters.

[34]  Min Pan,et al.  Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. , 2004, Genome research.

[35]  F. Tabita,et al.  Modified Pathway To Synthesize Ribulose 1,5-Bisphosphate in Methanogenic Archaea , 2004, Journal of bacteriology.

[36]  P. Schönheit,et al.  Novel Xylose Dehydrogenase in the Halophilic Archaeon Haloarcula marismortui , 2004, Journal of bacteriology.

[37]  W. Whitman,et al.  Two Biosynthetic Pathways for Aromatic Amino Acids in the Archaeon Methanococcus maripaludis , 2004, Journal of bacteriology.

[38]  Robert H. White L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. , 2004, Biochemistry.

[39]  C. Poulter,et al.  Identification of an Archaeal Type II Isopentenyl Diphosphate Isomerase in Methanothermobacter thermautotrophicus , 2004, Journal of bacteriology.

[40]  J. Escalante‐Semerena,et al.  CbiZ, an amidohydrolase enzyme required for salvaging the coenzyme B12 precursor cobinamide in archaea. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Giulio The Early Phases of Genetic Code Origin: Conjectures on the Evolution of Coded Catalysis , 2003, Origins of life and evolution of the biosphere.

[42]  W. Altekar,et al.  Degradation of endogenous fructose during catabolism of sucrose and mannitol in halophilic archaebacteria , 1992, Archives of Microbiology.

[43]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[44]  Robert H. White The biosynthesis of cysteine and homocysteine in Methanococcus jannaschii. , 2003, Biochimica et biophysica acta.

[45]  M. Gelfand,et al.  Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes* , 2003, Journal of Biological Chemistry.

[46]  W. D. de Vos,et al.  The unique features of glycolytic pathways in Archaea. , 2003, The Biochemical journal.

[47]  P. Singh,et al.  Isolation and characterization of an indigenous isolate of Dunaliella sp. for β‐carotene and glycerol production from a hypersaline lake in India , 2003, Journal of basic microbiology.

[48]  B. Snel,et al.  Systematic discovery of analogous enzymes in thiamin biosynthesis , 2003, Nature Biotechnology.

[49]  D. Oesterhelt,et al.  Crystal structure of halophilic dodecin: a novel, dodecameric flavin binding protein from Halobacterium salinarum. , 2003, Structure.

[50]  Stefanie Offermann "Shotgun-Kristallisation"- Strukturaufklärung eines Ferritins und einer Glyzerin-Dehydrogenase aus dem Archaeon H. salinarum , 2003 .

[51]  M. Krebs,et al.  The cobY Gene of the Archaeon Halobacterium sp. Strain NRC-1 Is Required for De Novo Cobamide Synthesis , 2003, Journal of bacteriology.

[52]  H. Santos,et al.  Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus , 2003, Archives of Microbiology.

[53]  Robert H. White,et al.  A member of a new class of GTP cyclohydrolases produces formylaminopyrimidine nucleotide monophosphates. , 2002, Biochemistry.

[54]  A. Oren Halophilic Microorganisms and their Environments , 2002, Cellular Origin, Life in Extreme Habitats and Astrobiology.

[55]  Robert H. White,et al.  Methanococcus jannaschii Uses a Pyruvoyl-dependent Arginine Decarboxylase in Polyamine Biosynthesis* , 2002, The Journal of Biological Chemistry.

[56]  M. Krebs,et al.  Identification of a Lycopene β-Cyclase Required for Bacteriorhodopsin Biogenesis in the Archaeon Halobacterium salinarum , 2002, Journal of bacteriology.

[57]  Dieter Oesterhelt,et al.  A novel mode of sensory transduction in archaea: binding protein‐mediated chemotaxis towards osmoprotectants and amino acids , 2002, The EMBO journal.

[58]  A. Moir,et al.  Glutamate dehydrogenase of Halobacterium salinarum: evidence that the gene sequence currently assigned to the NADP+-dependent enzyme is in fact that of the NAD+-dependent glutamate dehydrogenase. , 2002, FEMS microbiology letters.

[59]  Robert H. White,et al.  The Pyrimidine Nucleotide Reductase Step in Riboflavin and F420 Biosynthesis in Archaea Proceeds by the Eukaryotic Route to Riboflavin , 2002, Journal of bacteriology.

[60]  Robert H. White,et al.  New Class of IMP Cyclohydrolases in Methanococcus jannaschii , 2002, Journal of bacteriology.

[61]  M. Bonete,et al.  Sequencing, phylogenetic and transcriptional analysis of the glyoxylate bypass operon (ace) in the halophilic archaeon Haloferax volcanii. , 2001, Biochimica et biophysica acta.

[62]  A. Stams,et al.  Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria , 2001, Archives of Microbiology.

[63]  S. DasSarma,et al.  brp and blh Are Required for Synthesis of the Retinal Cofactor of Bacteriorhodopsin in Halobacterium salinarum * , 2001, The Journal of Biological Chemistry.

[64]  Robert H. White,et al.  Methanococcus jannaschii Generates L -Proline by Cyclization of L -Ornithine , 2001 .

[65]  B. Mukhopadhyay,et al.  A stable archaeal pyruvate carboxylase from the hyperthermophile Methanococcus jannaschii , 2000, Archives of Microbiology.

[66]  V. Thorsson,et al.  Genome sequence of Halobacterium species NRC-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. Smit,et al.  Biosynthesis of isoprenoids via mevalonate in Archaea: the lost pathway. , 2000, Genome research.

[68]  D. Oesterhelt,et al.  Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. , 2000, Science.

[69]  S. Fujiwara,et al.  Effect of polyamines on histone-induced DNA compaction of hyperthermophilic archaea. , 2000, Journal of bioscience and bioengineering.

[70]  H. Santos,et al.  Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus , 2000, Archives of Microbiology.

[71]  P. Bork,et al.  Variation and evolution of the citric-acid cycle: a genomic perspective. , 1999, Trends in microbiology.

[72]  H. M. Sonawat,et al.  Kinetic mechanism of glucose dehydrogenase from Halobacterium salinarum. , 1999, Indian journal of biochemistry & biophysics.

[73]  F. Pérez-Pomares,et al.  Erratum to: “Amino acid residues involved in the catalytic mechanism of NAD-dependent glutamate dehydrogenase from Halobacterium salinarum”: [Biochimica et Biophysica Acta, 1426 (1999) 513–525]1 , 1999 .

[74]  Thomas Szyperski,et al.  Amino Acid Biosynthesis in the Halophilic ArchaeonHaloarcula hispanica , 1999, Journal of bacteriology.

[75]  T. Oshima,et al.  sn-Glycerol-1-Phosphate-Forming Activities in Archaea: Separation of Archaeal Phospholipid Biosynthesis and Glycerol Catabolism by Glycerophosphate Enantiomers , 1999, Journal of bacteriology.

[76]  F. Pérez-Pomares,et al.  Amino acid residues involved in the catalytic mechanism of NAD-dependent glutamate dehydrogenase from Halobacterium salinarum. , 1999, Biochimica et biophysica acta.

[77]  H. M. Sonawat,et al.  Kreb's TCA cycle in Halobacterium salinarum investigated by 13C nuclear magnetic resonance spectroscopy , 1998, Extremophiles.

[78]  C. Schmidt,et al.  Studies of the Electron Transport Chain of the Euryarcheon Halobacterium salinarum: Indications for a Type II NADH Dehydrogenase and a Complex III Analog , 1998, Journal of bioenergetics and biomembranes.

[79]  D. Oesterhelt,et al.  Localization of glycolipids in membranes by in vivo labeling and neutron diffraction. , 1998, Molecular cell.

[80]  M. Engelhard,et al.  Cytochrome ba3 from Natronobacterium pharaonis--an archaeal four-subunit cytochrome-c-type oxidase. , 1997, European journal of biochemistry.

[81]  P. Jablonski,et al.  2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea , 1997, Journal of bacteriology.

[82]  M. Engelhard,et al.  Electron transfer proteins from the haloalkaliphilic archaeon Natronobacterium pharaonis: possible components of the respiratory chain include cytochrome bc and a terminal oxidase cytochrome ba3. , 1997, Biochemistry.

[83]  A. Ruepp,et al.  Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster , 1996, Journal of bacteriology.

[84]  C. Pire,et al.  Glucose dehydrogenase from the halophilic Archaeon Haloferax mediterranei: Enzyme purification, characterisation and N‐terminal sequence , 1996, FEBS letters.

[85]  G. Zavarzin,et al.  [Interaction of halobacteria and cyanobacteria in a halophilic cyanobacterial community]. , 1995, Mikrobiologiia.

[86]  M. Kates,et al.  Acylation of proteins of the archaebacteria Halobacterium cutirubrum and Methanobacterium thermoautotrophicum. , 1994, Biochimica et biophysica acta.

[87]  W. Altekar,et al.  Characterization of 1-phosphofructokinase from halophilic archaebacterium Haloarcula vallismortis. , 1994, Biochimica et biophysica acta.

[88]  W. Altekar,et al.  Ketohexokinase (ATP:D-fructose 1-phosphotransferase) from a halophilic archaebacterium, Haloarcula vallismortis: purification and properties , 1994, Journal of bacteriology.

[89]  W. D. de Vos,et al.  Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. , 1994, The Journal of biological chemistry.

[90]  G L Hazelbauer,et al.  Identification of volatile forms of methyl groups released by Halobacterium salinarium. , 1994, The Journal of biological chemistry.

[91]  M. Engelhard,et al.  The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. , 1994, The Journal of biological chemistry.

[92]  H. M. Sonawat,et al.  Pyruvate metabolism in Halobacterium salinarium studied by intracellular 13C nuclear magnetic resonance spectroscopy , 1994, Journal of bacteriology.

[93]  R. Rajagopalan,et al.  Characterisation and purification of ribulose-bisphosphate carboxylase from heterotrophically grown halophilic archaebacterium, Haloferax mediterranei. , 1994, European journal of biochemistry.

[94]  P. Dimroth,et al.  Anaerobic growth of , 1994 .

[95]  Danson Mj,et al.  The enzymology of archaebacterial pathways of central metabolism. , 1992 .

[96]  The enzymology of archaebacterial pathways of central metabolism. , 1992, Biochemical Society symposium.

[97]  E. Cadenas,et al.  Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase. , 1990, Biochimica et biophysica acta.

[98]  H. M. Sonawat,et al.  Glycolysis and Entner-Doudoroff pathways in Halobacterium halobium: some new observations based on 13C NMR spectroscopy. , 1990, Biochemical and biophysical research communications.

[99]  D. Kushner,et al.  Nutrition of the halophilic Archaebacterium, Haloferax volcanii , 1990 .

[100]  B. Hess,et al.  Magic angle sample spinning 13C nuclear magnetic resonance of isotopically labeled bacteriorhodopsin. , 1989, Biochemistry.

[101]  R. White A novel biosynthesis of medium chain length alpha-ketodicarboxylic acids in methanogenic archaebacteria. , 1989, Archives of biochemistry and biophysics.

[102]  E. Cadenas,et al.  Kinetic mechanism of Halobacterium halobium NAD+-glutamate dehydrogenase. , 1989, Biochimica et biophysica acta.

[103]  W. Altekar,et al.  Alternative routes of carbohydrate metabolism in halophilic archaebacteria. , 1988, Indian journal of biochemistry & biophysics.

[104]  M. Sumper Halobacterial glycoprotein biosynthesis. , 1987, Biochimica et biophysica acta.

[105]  M. Bonete,et al.  A new glutamate dehydrogenase from Halobacterium halobium with different coenzyme specificity , 1987 .

[106]  I. Ekiel,et al.  Mevalonic acid is partially synthesized from amino acids in Halobacterium cutirubrum: a 13C nuclear magnetic resonance study , 1986, Journal of bacteriology.

[107]  L. Hederstedt,et al.  Soluble succinate dehydrogenase from the halophilic archaebacterium, Halobacterium halobium. , 1985, Archives of biochemistry and biophysics.

[108]  F. Wieland,et al.  Biosynthesis of sulfated saccharides N-glycosidically linked to the protein via glucose. Purification and identification of sulfated dolichyl monophosphoryl tetrasaccharides from halobacteria. , 1985, The Journal of biological chemistry.

[109]  R. Addink,et al.  Electron transfer-II: Accumulation of 5-ethyl-3-methyllumiflavin radical by spontaneous conversions of 5-ethyl-3- methyllumiflavinium salts , 1985 .

[110]  B. Tindall,et al.  Natronobacterium gen. nov. and Natronococcus gen. nov., Two New Genera of Haloalkaliphilic Archaebacteria , 1984 .

[111]  D. Oesterhelt,et al.  Purification and properties of two 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. , 1981, European journal of biochemistry.

[112]  D. Oesterhelt,et al.  The catalytic mechanism of 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. One-electron transfer at two distinct steps of the catalytic cycle. , 1981, European journal of biochemistry.

[113]  D. Oesterhelt,et al.  Anaerobic growth of halobacteria. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[114]  J. Hopfield On electron transfer. , 1976, Biophysical journal.

[115]  M. Kates,et al.  Enzymatic synthesis of C40 carotenes by cell-free preparation from Halobacterium cutirubrum. , 1976, Canadian journal of biochemistry.

[116]  P. Fitt,et al.  An improved synthetic growth medium for Halobacterium cutirubrum. , 1976, Canadian Journal of Microbiology (print).

[117]  D. Oesterhelt Isoprenoids and Bacteriorhodopsin in Halobacteria , 1976 .

[118]  Dieter Oesterhelt,et al.  Light inhibition of respiration in Halobacterium halobium , 1973 .

[119]  D. Oesterhelt,et al.  Functions of a new photoreceptor membrane. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[120]  J. Hubbard,et al.  Reversible inactivation of the isocitrate dehydrogenase from an obligate halophile: changes in the secondary structure. , 1972, Archives of biochemistry and biophysics.

[121]  W. Wooster,et al.  Crystal structure of , 2005 .

[122]  D. Kushner,et al.  Growth and nutrition of extremely halophilic bacteria. , 1969, Canadian journal of microbiology.

[123]  A. D. Brown,et al.  Citrate and glyoxylate cycles in the halophil, Halobacterium salinarium. , 1969, Biochimica et biophysica acta.

[124]  W. Gain Variation and Evolution. , 1893, Science.